Econ 21410 - Problem Set V

Paper Replication®

May 20, 2014

This homework should be done in LaTeX The homework will be graded on correctness, but will
also heavily weight clarity and professionalism. Its better to not do some of the harder parts
than to turn in an incomprehensible document. Your R script as well as a log-file should be
submitted. Alternatively, use knitr to print your code inline in your latex document.

SUBMISSION: The homework must be emailed to Oliver and myself by 2p.m. Monday, May
12th. The email must include a pdf with the filename lastname_pset6.pdf and R code called

lastname_pset6_code.R where “lastname” should be replaced with your last name. The subject
of your email should be [ECON 21410: pset6 submission]

If you are struggling, please use the github page to ask for help!™ Remember that asking and
answering questions on our github page, coming to office hours to ask questions, and contributing
to the class wiki are all worth participation credit, which is 10% of your grade in this class.

In this homework we will be replicating a classic paper from Industrial Organization: Bresnahan
and Reiss (1991) “Entry and Competition in Concentrated Markets”. It can be downloaded
here: http://pages.stern.nyu.edu/ acollard/bresnahan-reiss.pdf

The data from the paper can be downloaded from my site or github.

Replicating Bresnahan and Reiss 1991

Using the provided data, replicate Table 4, Table 5-A, and Figure 4 from the paper but only for
tire dealers. Describe how you performed the replication, what your calculations were, how they
were implemented, the optimizer you used, etc. Your write-up should be written as if you were
performing this replication as part of your research, or part of your Job. Include clear details of
what you did, but do not be overly verbose.

To calculate your standard errors, use the "hessian()” command in the "numDeriv” library.
This command will give a reasonably accurate numerical approximation to the matrix of second
derivatives. Recall that your maximum likelihood standard errors will be the the square-root of
the diagonal terms of the inverted Hessian evaluated at your estimated parameter values.

Some hints and suggestions:

*Please email johneric@uchicago.edu and obrowne@uchicago.edu if you have questions.

. Solve the problem using maximum likelihood. Make a function that takes data and

parameter values as inputs and returns the negative log-likelihood.

. To test your log-likelihood function, try using the parameter values reported in their paper.

You should get roughly the same log-likelihood (differences larger than 1 may indicate a
problem in your code).

. In the paper, the a and v parameters are constrained to be greater than or equal to 0

(except v1,). These constraints are “Bound Constraints” and should not be too difficult to
impose (but will force you to use a particular optimizer in optim()).

. This problem is solvable with optim(), but you will need to give it smart starting values.

You can make sure it works by starting with the parameters from the paper, but then you
should find alternative starting values that may be what you would have used if writing
this paper yourself and did not know the true solutions.

. Your function will most likely produce some values of ”-Inf”. These can cause problems

and produce NaNs in later steps. You may wish to replace -Inf values with large negative
numbers like -1000000000000000000 to avoid this problem.

. It should be possible to write a relatively short log-likelihood function. Without comments

or trying to make my code particularly compact, mine in 19 lines long and references two
other functions which are both 9 lines long (without comments).

V <- function(br, n, alpha = rep(l, 5), bet = rep(l,

}

4)) {
profit <- alphal[l] + bet[1] * br$ELD + bet[2] =*
br$PINC + bet[3] * br$LNHDD + bet[4] * br$FFRAC
if (n >=2) {
for (i in 2:n) profit <- profit - alphali]
}

return(profit)

F <- function(br, n, gam = rep(l, 6)) {

F <- gam[1] + gam[6] * br$LANDV
if (m>=2) {

for (i in 2:n) F <- F + gam[i]
}

return(F)

theta.true <- c(-0.53, 2.25, 0.34, 0.23, -0.49, -0.03,

0.004, -0.02, 0.86, 0.03, 0.15, 0, 0.08, 0.53,
0.76, 0.46, 0.6, 0.12, -0.74)

1Lik <- function(theta = rep(1l, 19), br = br) {

lam <- thetal1:4]

bet <- thetal5:8]
alpha <- theta[9:13]
gam <- theta[14:19]

S <- br$TPOP + lam[1] * br$0POP + lam[2] * br$NGRW +
lam[3] * br$PGRW + lam[4] * br$0CTY

P <- list()

P[[1]] <- log(1 - pnorm(S * V(br, 1, alpha = alpha,
bet = bet) - F(br, 1, gam = gam)))

P[[2]] <- log(pnorm(S #* V(br, 1, alpha = alpha,
bet = bet) - F(br, 1, gam = gam)) - pnorm(S *
V(br, 2, alpha = alpha, bet = bet) - F(br,

2, gam = gam)))

P[[3]] <- log(pnorm(S * V(br, 2, alpha = alpha,
bet = bet) - F(br, 2, gam = gam)) - pnorm(S *
V(br, 3, alpha = alpha, bet = bet) - F(br,

3, gam = gam)))

P[[4]] <- log(pnorm(S * V(br, 3, alpha = alpha,
bet = bet) - F(br, 3, gam = gam)) - pnorm(S *
V(br, 4, alpha = alpha, bet = bet) - F(br,

4, gam = gam)))

P[L[5]] <- log(pnorm(S #* V(br, 4, alpha = alpha,
bet = bet) - F(br, 4, gam = gam)) - pnorm(S *
V(br, 5, alpha = alpha, bet = bet) - F(br,

5, gam = gam)))

PL[6]] <- log(pnorm(S * V(br, 5, alpha = alpha,
bet = bet) - F(br, 5, gam = gam)))

for (i in 1:6) P[[i]]1[P[[i]] == -Inf] <- -1e+08

1Lik <- sum(P[[1]] [br$TIRE == 0]) + sum(P[[2]] [br$TIRE ==
11) + sum(P[[3]] [br$TIRE == 2]) + sum(P[[4]] [br$TIRE ==

3]) + sum(P[[5]] [br$TIRE == 4]) + sum(P[[6]] [br$TIRE >=
51)
return(-1 * 1Lik)
}
#

Section 2: numerical optimization
#

What I want them to do

outl <- optim(par = rep(0.1, 19), 1Lik, br = br, lower = c(rep(-Inf,
8), rep(0, 10), -Inf), upper = rep(Inf, 19), method = "L-BFGS-B"
control = list(maxit = 500))

One Additional step

The optimizer called by “optim()” is approximating the gradient with finite-differences. The
library numDeriv offers an improved way to numerically approximate derivatives that tend to
be more accurate. Using the "grad()” function in the numDeriv library, write a new function
that returns the numeric gradient.

Use this function in the ”gr” option of "optim()” to have optim() use this function rather than
the built in finite-differences method. Does this change your solutions? Are they closer to the
ones reported in the paper? Use ”system.time” to time both methods, report and discuss (1-2
sentences).

Section 3: using numerical gradient
_____ —_—— —_—— -

Defining a function that returns the numeric

gradient.

1Lik.grad <- function(theta = rep(1, 19), br = br) {
grad(x = theta, 1Lik, br = br)

1

out2 <- optim(par = rep(0.1, 19), 1Lik, gr = 1lLik.grad,
br = br, lower = c(rep(-Inf, 8), rep(0, 10), -Inf),
upper = rep(Inf, 19), method = "L-BFGS-B")

Calculating Standard errors using hesstan (not a
great method ofcourse since we are inverting a

numerical hessian etc etc.)

out.grad <- grad(lLik, x = out2$par, br = br)
out.hessian <- hessian(1Lik, x = out2$par, br = br)
out.se <- sqrt(diag(solve(out.hessian)))

cbind (out2$par, outli$par, theta.true, out2$par - theta.true,
outi$par - theta.true)

results <- cbind(out2$par, out.se)

colnames(results) <- c("estimate", "se")

rownames (results) <- c("lambdal", "lambda2", "lambda3",
"lambda4d", "betal", "beta2", "beta3", "betad",
"alphal", "alpha2", "alpha3", "alpha4", "alphab",

"gammal", "gamma2", "gamma3", "gamma4", "gammab",
"gamma6")
stargazer(results, out = "n6_paperReplication/results.tex")

Section 4: Calculate thresholds
_____ - —_—= -

calc.S <- function(br, theta) {

lam <- thetal[1:4]

bet <- thetal[5:8]

alpha <- theta[9:13]

gam <- thetal[14:19]

br.m <- data.frame(t(colMeans(br)))

S <- rep(0, 5)
for (i in 1:5) S[i] <- F(br.m, i, gam)/V(br.m,
i, alpha, bet)

return(S)

}

S <- calc.S(br, out2$par)

SN.S5ratio <- (S[5] * (1:5))/(S * 5)
gplot(1:5, SN.Sbratio)

ggsave(file = "SNSbratio.pdf")

Table 1:

estimate se
lambdal -0.579 0.485
lambda2 0.616 1.546
lambdad3 0.623 0.795
lambda4 0.081 0.441

betal -0.269 0.644
beta?2 -0.014 0.031
betad -0.038 0.059
betad -0.012 0.078
alphal 0.969 0.459
alpha2 0.007 0.107
alphad 0.071 0.090
alpha4 0 0.079

alphab 0.082 0.050
gammal 0.452 0.230
gamma?2 0.748 0.187
gammad 0.642 0.218
gammad 0.591 0.250
gammab 0.099 0.172
gammab -0.836 0.412

Side Projects

e Write a function above that returns the analytic gradient. Use it in the step above and
report the timing (up to 2.5 points).

Figure 1: Relative profits

3.0-

25-

SN.Sbratio

15-

1.0-

Program some or all of this assignment in C++ using Repp or in Julia (up to 6 points).
Program some or all of assignment 2 or 3 in C++ using Repp or in Julia (up to 6 points).

Write down 3 research ideas. For each explain the idea in 4-10 sentences. Write 1-4
sentences on why it is interesting, write 1-4 sentences on what data you would use, write
1-4 sentences on what methods it would use. These ideas can be very rough. If you would
like feedback on one or all of them, let us know (up to 1 point each, whole assignment can
be done twice)

Find a paper that looks at market entry and write a 1-3 page report on it (up to 3.5
points).

Find up to 4 articles in the news and generate a related research ideas. Explain the idea in
1-4 sentences and how you might execute the research idea (1-3 sentences) (up to 1 point
per idea).

Read any published academic article by by Gary Becker and write a 2-3 page summary
and response (up to 3 points).

Commonly for grants or applications you will be required to write research proposals.
Write a research proposal that follows the guidlines set out by the NSF Graduate Research
Fellowship. Under “Graduate Research Statement” here:

http://www.nsfgrfp.org/how_to_apply/application_materials#proposed. (up to 5 points).

