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Abstract.
This paper examines how high school specialization shapes college investment deci-

sions and their subsequent returns through dynamic complementarities. Using Swedish
administrative data, we estimate a dynamic Roy model that accounts for selection on mul-
tidimensional skills, family background, prior investments, and unobserved heterogeneity.
We identify the model using rich skill measures and quasi-experimental variation in pro-
gram popularity. For marginal students, STEM specialization in high school increases
wages by 9%, with more than half this return attributed to dynamic complementarities
that enhance the productivity of subsequent college investments. Consequently, we find
that counterfactual policies encouraging high school STEM specialization generate twice
the returns of equivalent college-level interventions. These findings demonstrate how
the timing of specialized human capital investments matters during adolescence, with
important implications for education policies that encourage or restrict specialization.
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1 Introduction

Students typically begin choosing specialized programs or advanced courses during

adolescence. These early decisions may significantly shape subsequent education choices,

career trajectories, and econonomic outcomes. On one hand, high school specialization

may yield direct labor market benefits, steer students toward higher-return college majors,

or enhance the returns to specific college majors through dynamic complementarities—

where earlier investments increase the productivity of later investments. On the other

hand, dynamic complementarities could reduce returns if high school preparation and

college investments are poorly aligned. This potential trade-off suggests that policies

influencing high school specialization, whether encouraging or restricting it, may have

large impacts on college choices and their labor market returns.1 While existing research

has studied how high school graduation opens up access to college (e.g., Cameron and

Heckman, 2001; Altonji et al., 2012; Heckman et al., 2018b), considerably less is known

about how specialization within high school shapes subsequent college investments and

returns.

In this paper, we study how initial endowments and high school specialization com-

plement post-secondary education choices, and how these complementarities then affect

labor market outcomes. To quantify the importance of these complementarities, we de-

velop and estimate a dynamic Roy model that accounts for selection on multi-dimensional

skills, family background, prior investments, and persistent unobservables. We identify

the model using noisy measures of skills combined with quasi-experimental variation at

the high school specialization and college application stages. Using Swedish data, we find

that dynamic complementarities play a large role in the returns to high school specializa-

tion. For example, students who chose to specialize in STEM in high school received a

7.6% increase in wages on average. We estimate that 58% of this effect is due to dynamic

complementarities, while changes in post-secondary choices account for 22%, and direct

returns in the labor market account for 20%. We then show that counterfactual policies

targeting marginal STEM enrollees in high school have larger returns than similar policies

targeting college applicants.

Four aspects of the Swedish institutional setting enable our analysis. First, we ob-

1Such policies are hotly debated. For example, in 2014 the San Francisco school district made the
controversial decision to delay math specialization until tenth grade (Huffaker et al., 2024), restrict-
ing specialization occurring in high school. Similar limits are recommended in the 2023 California Math
Framework. Conversely, districts like Wake County, North Carolina have pursued the opposite approach,
implementing universal access to eighth-grade algebra and expanding pathways to advanced mathematics
(Dougherty et al., 2017). These contrasting approaches reflect broader debates about whether early spe-
cialization enhances or constrains student outcomes, with federal reports (e.g., U.S. President’s Council
of Advisors on Science and Technology, 2012) calling for education reforms to increase the number of
college graduates in Science, Technology, Engineering, and Mathematics (STEM) fields.
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serve students choosing high school programs at the end of ninth grade, which determines

what courses they take during high school. This specialization mirrors high school course

choices that are common in the United States and other countries (e.g., Betts, 2011;

Woessmann, 2016; Nomi et al., 2021). Moreover, high school programs can be compared

across schools as they are regulated at the national level. Second, men in our cohorts

completed an enlistment screening for mandatory military service, including cognitive

exams, personal interviews with psychologists, and measures of physical health. Com-

bined with measures of performance from ninth and tenth grade courses, these measures

allow us to identify the latent cognitive, interpersonal, and grit skills of students us-

ing a factor model. Third, we observe detailed information about the academic history

of individuals, including which schools they attend, their college applications, and ad-

missions outcomes. Within-school-across-cohort variation in specialization choices and

variation around college admission thresholds allow us to identify persistent unobserved

heterogeneity. Fourth, we have panel data on college enrollment where we see if they

switch programs and what, if any, degree they complete. We use Swedish registry data

on the population of men born between 1974 and 1976, where we can link comparable

measures of skills, family background, ninth-grade performance, high school choices and

performance, college choice and graduation, and labor market outcomes.

Our paper makes three main contributions. First, we build a dynamic generalized

Roy model to jointly model education decisions (starting in ninth grade through the end

of college) and labor market outcomes. The model includes both specialization decisions

and attainment in high school and college. To capture endogenous sorting on unob-

servables, we include a detailed measurement system for estimating a multidimensional

vector of latent skills. In addition, we include eight latent types that capture residual

correlations between education decisions and outcomes. We also directly model the col-

lege application process, where student applications will depend on both preferences (for

program and institution) and constraints in terms of their admission probabilities; i.e.,

whether they are above or below expected college program thresholds. The model en-

ables us to estimate how a detailed sequence of specialization choices depends on prior

choices, latent skills and types, and how these jointly affect outcomes. We show how our

model approximates a full dynamic model by flexibly estimating choice probabilities and

state transitions conditional on a period’s current state variables and choices, trading

off structural specificity for greater flexibility and a rich set of observed and unobserved

heterogeneity. While this means that we cannot calculate welfare or evaluate certain

counterfactuals, it avoids fully specifying structural elements like the utility function.2

2For example, while we cannot explicitly simulate the dynamic impacts of relaxing borrowing con-
straints (e.g., Caucutt and Lochner, 2020), study aid (e.g., Joensen and Mattana, 2021), or information
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Using the estimated model, we verify the basic elements of the generalized Roy model:

self-selection and differential returns to skills. We document rich sorting on multidimen-

sional skills into high school programs, followed by sorting on both skills and high school

track into college majors. These patterns suggest that students may sort based on het-

erogeneous returns that depend on their skills or other unobserved characteristics. We

then show that the returns to skills and high school track differ by final education. For

example, the returns to grit are over twice as large as the returns to interpersonal skills for

those studying Medicine, while the opposite is true for Social Sciences majors. Similarly,

for those who major in Engineering, the returns to an academic STEM specialization in

high school are high relative to non-STEM, while the opposite is true for those who major

in Law. These heterogeneous returns imply that expected relative earnings across degrees

will differ depending on the student. Indeed, when we rank majors by expected earnings

for each student based on their skills, background, and high school investments, we find

that seven different majors are ranked highest across the students in our population.

Second, we calculate treatment effects for the different high school specializations and

find that, on average, the returns to the academic STEM track are high relative to the

academic non-STEM or vocational tracks. However, these average results mask substan-

tial heterogeneity. For example, the treatment effects on the treated (TT) is notably

higher than the treatment effect on the untreated (TUT) for each pairwise comparison:

academic STEM vs non-STEM, academic STEM vs vocational, and academic non-STEM

vs vocational. In fact, for academic non-STEM vs vocational, the TT is large and positive,

while the TUT is negative, meaning that students sort on gains.

High school specialization can impact later labor market outcomes through several

channels. It may yield direct labor market benefits, steer students toward higher-return

college majors, or enhance the returns to specific college majors through dynamic comple-

mentarities. We decompose the treatment effects of high school specialization into these

three components. When considering academic STEM vs non-STEM specializations, we

find that over half of the overall treatment effect comes from dynamic complementarities

(e.g., reaping the higher returns to engineering), with the rest approximately equally

split between direct effects and changes in future education choices. For academic STEM

vs vocational, the treatment effects are larger, largely driven by larger impacts from

changes in later education choices (e.g., becoming an electrical engineer rather than an

electrician). Finally, the relative importance of these three components varies by skill

endowments. When decomposing the treatment effect of academic STEM vs non-STEM,

interventions (e.g., Arcidiacono et al., 2025), we still capture rich heterogeneity in such impacts and
our estimates do not depend on assumptions about individual beliefs about the returns to investments,
knowledge of their graduation probabilities, or the extent to which they face financial or non-financial
constraints.
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direct effects are much more important for those with low levels of cognitive skills or

grit, while dynamic complementarities are more important for those with high levels of

skills. Overall, these results highlight the important role of dynamic complementarities

in explaining the impacts of specialization in high school.

Third, we use the model to evaluate two counterfactual policies designed to promote

STEM education at different stages. The first policy encourages those at the margin

for the high school STEM track to pursue it. The second policy incentivizes students

already applying to college to choose STEM programs. Both policies leave all other

choices unconstrained. We find that each policy increases the number of college STEM

enrollees and graduates, but the high school policy creates larger wage gains and benefits

a greater share of those affected. For example, we estimate that those induced into the

academic STEM specialization in high school have 8.6% higher wages and that 71% of

them benefit from higher wages. In contrast, we estimate that the policy encouraging

applying to STEM majors in college increases wages by 2.5% for those who change their

final education due to the policy, and only 54% benefit from higher wages. The high school

policy has larger returns in part because those induced into the STEM track become more

likely to enroll in college and pursue STEM degrees. In addition, the returns to college

STEM degrees are larger for those who took the STEM track in high school. These results

highlight the importance of understanding (1) how students sort through the education

process, (2) how the returns to education investments can vary by skills, and (3) the

dynamic complementarities between earlier and later investments.

Overall, our findings reveal four key insights for education policy. First, we document

substantial dynamic complementarities between high school and college investments, with

complementarities explaining up to half of the total return to high school STEM special-

ization. Second, the magnitude of these complementarities varies systematically with

student skills, being strongest for students with high cognitive skills and grit. Third, the

timing of specialization matters: early STEM investments yield larger returns than en-

couraging STEM at the college application stage for marginal students, primarily because

high school specialization develops the prerequisites needed to succeed in college STEM

majors. Finally, we show that interventions targeting specialization have heterogeneous

effects across the skills distribution, with important implications for both the efficiency

and equity of education policy.

Related literature. Our paper bridges and extends several strands of literature. First,

we build on research examining dynamic complementarities in human capital formation,

which has primarily focused on early childhood but rarely on the adolescent period when

education specialization typically begins. Second, we extend methodological approaches
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to education choice by developing a framework with multiple unordered specialization op-

tions at both high school and college levels. Third, we contribute to the literature on high

school specialization by modeling how these early choices create constraints and opportu-

nities for later investments. Fourth, we advance the understanding of what the returns to

college major embody. Throughout these contributions, we highlight the importance of

understanding both the timing and type of specialized investments for developing effective

human capital policy.

Identifying dynamic complementarities is challenging, with most of the literature fo-

cused on young children. The literature has taken three approaches to identification.

The first approach uses panel data on inputs and outcomes to structurally estimate the

technology of skill formation in which inputs are allowed to interact with one another

(e.g., Cunha et al., 2010; Agostinelli and Wiswall, 2016; Attanasio et al., 2020; Aucejo and

James, 2021; Joensen et al., 2022). The second approach leverages quasi-experimental

variation in policies affecting human capital investments at two points early in the life-

cycle (e.g., Malamud et al., 2016; Rossin-Slater and Wüst, 2020), requiring what Almond

and Mazumder (2013) describe as being akin to asking for “lightning to strike twice.” The

third approach uses field experiments with randomization at multiple education stages

in early childhood, preschool, or elementary school (Carneiro et al., 2022; Meghir et al.,

2023; List and Uchida, 2024).

Methodologically, we build on Heckman et al. (2018a,b) who develop a framework to

analyze sequential education choices and their returns.3 This approach enables flexible

estimation of a variety of ex post returns to sequences of education investments and how

they depend on both observed and unobserved heterogeneity. We expand their framework

in three key ways. First, while they focus on binary choices at each stage, our model incor-

porates multiple unordered choices at both high school and college levels, capturing the

complex specialization options students face. Second, we explicitly model the constraints

imposed by competitive college admissions, which creates identification challenges similar

to those in the (dynamic) treatment effect literature. Third, we use multiple sources of

exogenous variation to identify unobserved heterogeneity in the unordered choice models.

Together, these extensions allow us to estimate the dynamic complementarities between

high school and college investments on labor market outcomes.

Empirically, we extend the literature on dynamic complementarities into the criti-

cal high school to college transition and explicitly model how earlier investments change

future opportunities and constraints. While dynamic complementarities have been exten-

sively studied during early childhood, we know little about them during adolescence—a

3Also see Cameron and Heckman (2001) for an earlier example and Eisenhauer et al. (2015) for
related methodological discussions.
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sensitive period for advanced cognitive skill development (Hoxby, 2021) when students

begin making specialized choices with significant labor market consequences (Altonji

et al., 2012). This period is particularly consequential as adolescence represents a critical

juncture where specialization decisions begin to lock in career trajectories.

Prior work has studied specialization in high school and college separately. At the

high school level, most literature estimating causal effects has focused on binary choices—

analyzing either academic STEM versus non-STEM specialization (Altonji, 1995; Joensen

and Nielsen, 2009; Cortes et al., 2015; Goodman, 2019) or vocational versus general

training (Oosterbeek and Webbink, 2007; Malamud and Pop-Eleches, 2011; Hall, 2012,

2016; Hanushek et al., 2017; Dustmann et al., 2017; Golsteyn and Stenberg, 2017; Zilic,

2018; Bertrand et al., 2021).4 Among the papers estimating labor market effects of high

school specialization, Dahl et al. (2023) provides the most closely related evidence. They

estimate the causal effects of different academic high school lines and the vocational track

in Swedish high schools. They focus on the subset of oversubscribed programs and use

a regression discontinuity design to estimate local average treatment effects for students

near admission thresholds. Their estimates align closely with our estimates of average

treatment effects for marginal students, providing external validation to our approach.

At the college level, many papers study the returns to college major. See, for example,

Kirkebøen et al. (2016), or Altonji et al. (2016) and Patnaik et al. (2021) for reviews of

this literature.5 However, little is known about how the returns to college majors are

shaped by previous education investments. Altonji et al. (2012) advocate the importance

of analyzing high school and college choices jointly to get at the importance of the timing

of specific investments. A few papers analyze the importance of high school investments

for college outcomes (Joensen and Nielsen, 2016; Card and Payne, 2021; Belzil and Poinas,

2018; De Groote and Declercq, 2021; Fiala et al., 2022). Related papers study the role of

math and verbal skills for the transition from high school to college (Aucejo and James,

2021; Delaney and Devereux, 2020), mechanical skills for college enrollment (Prada and

Urzúa, 2017), and finally, Saltiel (2023) shows the important role of non-cognitive skills

and math self-efficacy for gender differences in college major enrollment, graduation, and

returns. Our paper brings together skills, high school investments, and college invest-

ments into a single framework, helping us better understand dynamic complementarities

and the broader returns to high school investments.

Finally, we also contribute to the large literature on the importance of cognitive and

4See Altonji et al. (2012) for a review of this literature. Golsteyn and Stenberg (2017) also relate
the Swedish military enlistment measures of leadership skills and psychological stability to the choice of
vocational versus academic secondary education and later life earnings.

5In complementary work Rodŕıguez et al. (2016) and Mourifie et al. (2020) use generalized Roy
models to study the heterogeneous treatment effects of college majors.
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non-cognitive skills. See, for example, Lindqvist and Vestman (2011) and Edin et al.

(2022) for the Swedish context and Heckman et al. (2021) for a recent review. We

contribute to this literature by estimating how students sort on multidimensional skills

into high school tracks and college majors, and how these skills interact with education

investments to generate labor market returns.

2 Simple Dynamic Model of Specialized Investments

While high school graduation and college graduation are often treated as binary vari-

ables, both involve additional specialization choices. To fix ideas, we begin by characteriz-

ing the treatment effect of specializing in high school, showing that it can be decomposed

into the direct impact of specialization, the impact of specialization on college choices,

and the dynamic complementarities between high school and college choices. Consider

the model visualized in Figure 1 with two sequential multinomial decisions. Students

first choose to graduate from high school with specialization Dhs ∈ {1, .., Shs} or not

(Dhs = 0), and then they choose to go to college with specialization Dcol ∈ {1, ..., Scol}
or not (Dcol = 0).

Figure 1: Stylized Two-Period Choice Model

High School College

HS Grad in
shs

Col Grad in scol

No College

HS Dropout

Dhs

Dshs
col

Y 00

Y shs0

Y shsscol

We define a student’s potential outcome when fixing Dhs = shs and Dcol = scol as

Y shsscol . Likewise, we define the potential outcome for Dcol, where Dshs
col is the poten-

tial college choice when fixing high school specialization Dhs = shs. The college choice

may be influenced by what they study in high school either because they develop spe-

cialized human capital, learn about themselves, learn about college specializations, or

their preferences change. Finally, we define a more compact notation using the indi-

cator Hshs
s = 1(Dshs

col = s) if a student’s final college state is s when their high school

specialization is fixed to shs.
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Consider the simplified setting where specialization in high school is between STEM

(Dhs = 2) or not STEM (Dhs = 1). We can write the individual treatment effect of

specializing in high school STEM (Dhs = 2) on outcome Y as

∆D1(Y ) =

Scol∑
s=0

Y 2sH2
s − Y 1sH1

s

= (Y 20 − Y 10)H2
0 +

Scol∑
s=0

Y 1s[H2
s −H1

s ] +

Scol∑
s=1

(Y 2s − Y 1s)H2
s

= (Y 20 − Y 10)H2
0︸ ︷︷ ︸

Direct Effect

+

Scol∑
s=1

(Y 1s − Y 10)[H2
s −H1

s ]︸ ︷︷ ︸
Changes to College Choice

+

Scol∑
s=1

(Y 2s − Y 1s) H2
s︸ ︷︷ ︸

Dyn. Complementarity

, (1)

where we use the identity Hj
0 = 1−

∑Scol
s=1 H

j
s in the last step.

The first term is the direct effect (i.e., how much high school STEM changes the

potential outcome without a college degree), the second term is the effect from changes

in college choices only (i.e., the change in the non-STEM return to college from switching

college choices), and the third term is the dynamic complementarity (i.e., how much high

school STEM changes the college return). Imagine a policy maker who wishes to restrict

students from specializing in STEM. Even if college choices could be fixed, the costs of

losing the direct effect and the dynamic complementarity with college investments would

remain. An important goal of this paper is to understand the relative importance of these

three components and how they depend on student background and skills.

Estimating dynamic complementarities using standard causal methods is challenging.

Even with (quasi-)random variation at both margins, it is not possible to know if the

compliers at one stage (e.g., high school) are the same as the compliers at later stages

(e.g., college), except under perfect compliance. It is difficult, however, to find a setting

where specialization in high school and college could be assigned with perfect compliance.

Our solution is to use a generalized Roy Model to jointly estimate (i) the conditional

choice probabilities (CCP) for different specializations and (ii) the causal effects of these

specializations. To do this, we impose additional structure in order to estimate (i) and (ii)

for different populations characterized by rich heterogeneity on multidimensional skills,

persistent latent unobservables, and other background characteristics. As we discuss

in Section 4, we use a sequence of education choices combined with multiple sources

quasi-experimental variation to identify latent distributions of skills and other persistent

unobservables. We then invoke conditional independence assumptions, but conditioning

on both a rich set of observable and persistent unobservables.
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3 Institutional Setting and Data

In this section, we describe the education environment and other institutional details

of Sweden for the cohorts born in 1974-76, which are the focus of our analysis. Primary

through upper-secondary schooling in Sweden is regulated by the Education Act of 1985.6

Swedish children enroll in first grade in the fall of the calendar year in which they turn

seven. After nine years of compulsory schooling, most Swedish students enroll in high

school.7 Whereas compulsory schooling is fully comprehensive with very limited choice of

optional courses, there are many high school lines to choose from. Students submit their

high school applications to the Board of Education in their home municipality. If students

want to be considered for multiple high school lines, then they submit a rank-ordered list

of up to six lines. The home municipality is responsible for offering high school lines that

– to as large an extent as possible – align with the preferences of all qualified students.8

If there are more applicants than available seats, then seats are allocated based on ninth-

grade grade point average (GPA).9 In this period, high school lines were generally not

selective, and most students are admitted to (96%) and graduate from (92%) the high

school track of their preferred choice.

High school lines are broadly classified into vocational and academic high school pro-

grams. We classify or group the academic high school lines into non-STEM and a STEM

“tracks.” This classification allows for both vertical sorting between academic and vo-

cational tracks, as well as horizontal sorting between STEM and non-STEM within the

academic track. The academic non-STEM track consists of the three lines in business,

social science, and humanities. The academic STEM track consists of two lines in science

and technical studies. All five 3-year academic high school lines comprise an average of 32

hours of instruction time per week. Appendix Table A.3 provides a brief summary of the

mandated distribution of the core curricula in each of these high school lines. There are

large differences in the amount of instruction time devoted to math, science, and other

technical courses. For example, the students in the technical line have 18 hours devoted

to math, science, and technical courses per week, while the students in the academic

non-STEM track only have 2-4 hours per week. Not only do the STEM track students

have more time devoted to math, science, and technical courses, they also have more

6See the Education Act 1985:100 for the complete law text and its changes over time, available in
Riksdagens law archives). Björklund et al. (2005) also provides a thorough description of education in
Sweden during this period.

7Meghir and Palme (2005) and Meghir et al. (2018) provide more background and evaluate the
impacts of the Swedish compulsory schooling reform that mandated nine years.

892% of high schools are run by the municipality during our sample period. Stockholm County is
the main exception in which all but two municipalities run a pooled high school admission process.

9We describe high school application and admission in more detail in Appendix A.2. See the Sec-
ondary School regulation 1987:743 and 1992:394 for the complete details of the process.
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advanced courses on these topics. The choice of high school line thus means a substantial

difference in the curriculum and readiness for certain college majors.

High school graduates comprise the pool of potential college applicants. Meeting the

basic requirements for college enrollment requires completing three years of academic high

school or two years of vocational high school followed by a year of college preparatory

courses. College admission is predominantly conditional on high school GPA, but other

factors also affect the admission score, including the Swedish Scholastic Aptitude test

(SweSAT), high school track and course choices, and labor market experience.10 For

example, only academic STEM track graduates have the qualifications to enroll in all 4-

year STEM college majors without additional supplementary courses, and only students

in the science line are directly qualified for all 4-year college majors.

College admission is largely centrally administered. A college application includes a

rank-ordered list of up to 12 college-program choices.11 Selectivity varies greatly across

college majors: the 4-year programs in Medicine, Law, and Humanities are the most

selective. All Medicine and Law college programs require a GPA one standard deviation

above the mean, while all Humanities college programs require a GPA above the mean

to be directly admitted. However, Medicine is also the major that admits most students

(25%) based on other merits: predominantly through personal interviews. The STEM

majors are generally the least selective, while the remaining 4-year programs are mod-

erately selective; the bulk of the college programs require a GPA between the mean and

the mean plus one standard deviation, but there are also many college programs within

each of these majors that admit all qualified applicants.12

Higher education is tuition-free for all students and largely financed by the central

government. College students are eligible for universal financial aid of which around

one third of the total amount is a grant (or scholarship) and the remaining two thirds

are provided as a loan. Student aid is largely independent of parental resources but

means-tested on student income, and the maximum eligibility period is 240 weeks (the

equivalent of 12 semesters or six enrollment years). Student loans are subsidized, and the

loan repayment plan was income-contingent for those in our sample.13

10Öckert (2010) describes the college admission process for the earlier cohorts, while Altmejd (2018)
describes it for the later cohorts. The SweSAT has become a more important factor over time, particularly
after 1991, and it was the key factor for admission for more than a third of our sample. All the details
can be found in the Higher Education Act 1992:1434 and the Higher Education Ordinance 1993:100.

11In this respect, the college application in Sweden is similar to, for example, Norway (Kirkebøen
et al., 2016), Denmark (Humlum et al., 2017; Heinesen et al., 2022), Chile (Hastings et al., 2013; Bordon
and Fu, 2015). Altmejd et al. (2021) directly compare college application in Sweden to Croatia, Chile,
and the United States.

12We provide more descriptives and details in Appendix A.3.
13The students in our sample are enrolled in college during the pre-2001-reform study aid regime as

detailed in Joensen and Mattana (2021).

10

http://www.riksdagen.se/sv/dokument-lagar/dokument/svensk-forfattningssamling/hogskolelag-19921434_sfs-1992-1434
http://www.riksdagen.se/sv/dokument-lagar/dokument/svensk-forfattningssamling/hogskoleforordning-1993100_sfs-1993-100


3.1 Data

We merge several administrative registers via a unique individual identifier for the

population of Swedes born in 1974-76. Our measurements of health, skills, and family

background come from the Military Enlistment archives administered by the Swedish

Defence Recruitment Agency (Rekryteringsmyndigheten), the Swedish National Archives

(Riksarkivet), and several registers administered by Statistics Sweden (SCB).

The Military Enlistment archives contain cognitive test scores, psychological assess-

ments, and health and physical fitness measures collected during the entrance assessment

at the Armed Forces’ Enrollment Board. The enlistment was mandatory for all Swedish

males at age 18 until 2010, thus for all males in our sample who are Swedish citizens.

The entrance assessment spans two days. Each conscript is interviewed by a certified

psychologist with the aim of assessing the conscript’s ability to fulfill the psychological

requirements of serving in the Swedish defense, ultimately in armed combat. The set

of personal characteristics that give a high score include persistence, social skills, and

emotional stability (Lindqvist and Vestman, 2011).

To validate our interpretation of the latent skill factors, we merge these registers to

the Evaluation Through Follow-up (ETF) surveys administered to third, sixth, and tenth

grade students by the Department of Education and Special Education at Gothenburg

University.14 We use the survey of a random sample of the 1972 cohort, which includes

extensive measures of aptitude and achievement tests, absenteeism, special education and

tuition, and grades in various courses through compulsory schooling, as well as extensive

student and parent surveys related to student achievement, confidence, inputs, grit, and

interpersonal skills.

We also have detailed data on education choices and outcomes from the Ninth Grade

registry (incl. grades in math and English courses, whether advanced math and English

courses were selected, and GPA), the High School registry (incl. grades in individual

courses, GPA, track and specialization choices), and the Higher Education registry (incl.

detailed education codes for all enrollment spells, course credits accumulated during en-

rollment, and acquired degrees). We classify high school students into three tracks: vo-

cational, academic (non-STEM), and academic STEM. As discussed in the prior section,

college applicants are screened based on their high school course choices and GPA. Some

of them are also admitted based on high performance in the SweSAT on which we have

overall test scores and sub-scores on every attempt through the Department of Applied

Educational Science at Ume̊a University. We have access to the complete histories of

college applications and admissions from 1993 onwards through the Swedish National

14Härnqvist (1998) provides additional details on the construction of the survey.
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Archives. These include the complete set of admission scores in each admission group, as

we basically observe the complete data from the college admission process.

From the Higher Education registry, we observe the level and field of every college

enrollment spell and degree. We classify all academic programs into two levels (≤ 3

years; ≥ 4 years) according to the SUN2000Niva code and nine fields (1. Education;

2. Humanities and Art; 3. Social Sciences and Services; 4. Math, Natural, Life and

Computer Sciences; 5. Engineering and Technical Sciences; 6. Medicine; 7. Health

Sciences, Health and Social Care; 8. Business; 9. Law) according to the SUN2000Inr

code. The Swedish education nomenclature (SUN2000) codes build on the International

Standard Classification of Education (ISCED97), and we group programs into majors

according to the first digit of the SUN2000Inr code. We single out Business and Law

from the Social Sciences major and Medicine from the Health Sciences major to better

compare to previous literature. Some of the 3-year programs have few students, so we

group them into STEM (Science, Math, Engineering) and non-STEM (Humanities, Social

Science) majors. Students in the 3- and 4-year Education and Health Sciences majors

(excluding medicine) look similar on observables and labor market outcomes, so these are

grouped together.15

The Multigeneration registry allows us to link children to their parents and back-

ground variables from the longitudinal integration database for health insurance and

labor market studies (LISA) from which we have yearly observations during the period

1990-2013. This allows us to observe individual income until they are 37-39 years old, as

well as parental background variables (including highest completed education and dispos-

able family income). We supplement this with information on disposable family income

from IoT for the years 1978-89 so that we can control for average disposable family

income in the mother’s household at ages 5-18.

3.1.1 Sample Selection

We focus on males born in 1974-1976. We restrict to males since military enlistment at

age 18 was only mandatory for Swedish males, and these scores are important measures of

latent skills. We choose the 1974-1976 birth cohorts for two reasons. Our sample begins

with the 1974 birth-year cohort because the detailed college credit data only exists from

1993 onwards and this is also the year the classification of higher education in Sweden

changed considerably. Our sample ends with the 1976 birth-year cohort because the

cognitive scores from the military enlistment were significantly changed in July 1994.

15Appendix A.3 provides more details and descriptives by college major.
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3.2 Measuring Multidimensional Skills

We identify latent skills using evaluations done as part of the compulsory military

enlistment and course grades in compulsory and the first year of high school. Let the

measurement system, M , denote a vector of measures or proxies of skills. Students may

be evaluated after they have been exposed to different types and levels of education. Let

Mms denote the mth measure evaluated at schooling state s. We define M̃ms as latent

variables that map into observed measures Mms:

Mms =

{
M̃ms if Mms is continuous

1(M̃ms ≥ 0) if Mms is a binary outcome.

The latent variables are assumed to be separable in observables, latent skills, and an

idiosyncratic error term:

M̃ms = αms + βMmX + λMmθ + um,

where αms represents schooling-state specific intercepts for measure m, X is a vector of

observables, θ is a vector of latent skills, and um is the error term. We assume that um

are mutually independent across each m and are independent of θ, X, and the error

terms in schooling decisions and labor market outcomes.

Our specification accounts for two potential biases in the measures. First, we include

observables (X) in the measurement system to account for biases in the evaluations that

are due to the student’s background.16 Hence, when we report deciles of latent skills, we

are measuring “residual” latent skills.17 Second, some of the measures are determined

after students have partially completed some specializations (Hansen et al., 2004). For

example, students are evaluated by the military at age 18 when their performance might

be affected by their high school specialization. The inclusion of αms in the measurement

system implies that our latent skills are measured relative to the skills of students in

ninth grade (s = 0). In Appendix Section B.1, we show that the effect of schooling at

the time of the test (αms) is separately identified from differences in how students sort

across schooling states. The key assumption is that we have as many pre-specialization

16See e.g. Neal and Johnson (1996) and Winship and Korenman (1997).
17One can think of the residual latent factors as projections of the latent factors onto the orthogo-

nal component of the student characteristics, and then the Frisch-Waugh-Lovell theorem should apply
(approximately).
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measures as factors.18

The relationship between the individual measures and the three factors is summarized

in the left panel of Table 1. In order to facilitate interpretation of the factors, we specify a

triangular measurement system with orthogonal factors.19 Appendix Section B provides

more details about the measures and estimation. The estimates of the measurement

system are described in Appendix Section F.

To interpret and label the three skill factors, we validate them using an independent

survey administered to a random subset of students in third and sixth grade. We estimate

the relationship between the three factors and over 250 survey questions and instruments,

ranking each item by the fraction of variance explained by each factor. The right panel of

Table 1 shows the top five survey items for each factor. The first factor loads most heavily

on test scores and grades (ten of the top twenty items), which we label “Cognitive Skill”.

The second factor predicts items related to sports, public speaking comfort, and social in-

teractions, which we label “Interpersonal Skill”. The third factor best predicts academic

persistence and students’ feelings about school performance, which we label “Grit Skills”.

While these labels facilitate interpretation, the factors could reasonably be labeled dif-

ferently. For example, the third factor might represent perseverance, conscientiousness,

self-regulation, or motivation.20

18Since pre-specialization measures are not affected by future investments, the conditional means of
the pre-specialization measures are informative of how students sort into different schooling paths. Any
additional difference in later measures by, for example, STEM vs vocational education, must be due to
the different types of skills learned in those programs beyond the skills of the students in ninth grade.

19A triangular measurement system is one in which the measures are partitioned into groups based
on how they depend on the factors and, by design, the factors are orthogonal.

20Heckman et al. (2021) synthesize recent research on skill measurement and provide more context
on these concepts.
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Table 1: Structure of Measurement System and Interpretation of Factors

Panel A: Measures θ1 θ2 θ3 Panel B: UGU Survey Items

Enlistment Registers θ1: “Cognitive Skills”
4 Cognitive Test Scores:b x Test Scores (10 of top 20)

Leadership Evaluationa,b x Spend time doing a hobby (-)

Leadership Skillsb x x Ask the teacher for help more often?

Emotional Stabilityb x x How often read newspapers and comics?

Like to understand more of what you read?

9th Grade Registers θ2: “Interpersonal Skills”
Math Gradesc x x x Bad at sports and physical exercise? (-)

English Gradesc x x x How you feel about talking to the whole class?

Swedish Gradesf x x x How often do you do sports?

Sports Gradesf x x x Participated in any form of childcare

Residual GPAdf x x x Often spend time on own during breaks? (-)

10th Grade Registers θ3: “Grit Skills”
Math Gradesb x x x Think that you do well in school?

Sports Gradesb x x x Do your best even when tasks are boring?

Residual GPAe x x x How often do school work at home?

How do you feel about drawing and painting? (-)

Have to learn lots of pointless stuff in school? (-)

Notes: a Binary discrete choice models. b Ninth grade advanced course indicators and high school track
indicators are included. c Advanced course indicators included. d Math, English, Swedish and Sports grades are
included in the Ninth grade residual gpa model. e Tenth grade math and sports grades are included. f These
measures do not include any schooling-state specific intercepts. (-) indicates that the factor is negatively related
to these items.

4 Empirical Model and Estimation Strategy

This section lays out our empirical model. To begin, we show how our model approx-

imates a full dynamic model by flexibly estimating choice probabilities and state transi-

tions conditional on a period’s current state variables and choices, trading off structural

specificity for greater flexibility and a rich set of observed and unobserved heterogeneity.

Next, we describe our empirical model of the Swedish education setting. In particular,

we explain how we take into account the college application process. Finally, we discuss

our estimation strategy and model fit.

4.1 Our Modeling Approach

We start with the general education choice model that corresponds to the underlying

dynamic discrete choice problem of students. Consider the model, where each period

from t = 0 to t = T students have a set of observed state variables At, and make a
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decision Dt ∈ Kt = {1, ..., Nt}. In period t students observe state variables At and make

decisions to maximize expected utility, where U is the student’s utility function and β is

the discount factor. The student’s dynamic programming problem can then be written

as:

V (At) = max
Dt∈Kt

(
U(Dt,At) + β

∫
V (At+1)dF [At+1 | Dt,At]

)
.

We assume that the state variable At = {Xt, ξ, εt}, where Xt are state variables

observed by the econometrician including the history past choices, ξ is a set of persistent

state variables known by the student but unobserved by the econometrician, and εt are

transient shocks observed by the student at time t, but not observed by the researcher.21

Finally, students may also have some observable outcomes each period that directly enter

the utility function or may be of interest to policy makers, such as earnings, given by

Yt = Yt(Xt, ξ,ηt).

We make two main assumptions that are common in the dynamic discrete choice lit-

erature, particularly in the literature which uses conditional choice probability (CCP)

methods such as Hotz and Miller (1993) and Arcidiacono and Miller (2011). First,

we assume that the unobservable shocks are i.i.d. over time and across students with

distribution Gε. Second, we assume that the transition of state variables depend on

decisions and the state variables from the previous period, but not the shocks from

the previous period (i.e., Fx [Xt+1 | Dt,Xt, ξ, εt] = Fx [Xt+1 | Dt,Xt, ξ]). These two as-

sumptions together give us Rust’s conditional independence assumptions as discussed in

Rust (1994) and reviewed in Aguirregabiria and Mira (2010). Given these assumptions,

F [Xt+1, εt+1 | Dt,Xt, εt, ξ] = Fx [Xt+1 | Dt,Xt, ξ]Gε(εt+1).

Under the assumptions above, the choice-specific value function can be written as

v(Dt,At) = U(Dt,At) + β

∫ ∫
V (At+1)dGε(εt+1)dFx [Xt+1 | Dt,Xt, ξ]

= U(Dt,At) + β

∫
V̄ (At+1)dFx [Xt+1 | Dt,Xt, ξ] ,

where V̄ (At+1) ≡
∫
V (At+1)dGε(εt+1) is the integrated value function. We can now write

the probability than an individual chooses action Dt = k in period t as

P(Dt = k|Xt, ξ) =

∫
1

{
arg max
Dt∈Kt

[vt(Dt,Xt, ξ) + εt(Dt)] = k

}
dGε(εt).

As noted in Benkard et al. (2018), many economically relevant counterfactuals can be

estimated through simulation without explicitly solving the dynamic program or taking

21For simplicity, here we use ξ for all persistent latent state variables unobserved by the econometri-
cian, while later we break this into latent skills θ and latent types υ (i.e. ξ = {θ,υ}).
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a stand on the functional form of the utility function. In particular, the joint probability

of a given set of states and set of actions can be written as:

P (D0, (D1,X1), ..., (DT ,XT ) |X0, ξ) = (2)

P(DT | ξ,XT )FX [XT | DT−1, ξ,XT−1]...P(D1 | ξ,X1)FX [X1 | D0, ξ,X0] P(D0 | ξ,X0).

Under the assumptions of the model, each of these components can be estimated non-

parametrically from the data, giving estimates of P(Dt|ξ,Xt) and FX [Xt | Dt−1, ξ,Xt−1]

for all combinations of choices and state variables. Using these estimated choice prob-

abilities, it is then possible to estimate how fixing a particular choice at time t affects

decisions at time t+ τ .22 For example, consider a student with Xt at time t, then

P(DT | ξ,XT )FX [XT |DT−1, ξ,XT−1] ...P(Dt+1 | ξ,Xt+1)FX [Xt+1(Dt = 1) | ξ,Xt]

−P(DT | ξ,XT )FX [XT |DT−1, ξ,XT−1] ...P(Dt+1 | ξ,Xt+1)FX [Xt+1(Dt = 0) | ξ,Xt]

gives the change in the joint probability of observing the realization {(Dt+1,Xt+1), ..., (DT ,XT )}
counterfactually fixing choice Dt from 0 to 1. In Appendix Section D.1.1, we show how

fixing a particular choice at time t affects outcomes Yt.

Using this setup, it is possible to simulate how fixing a choice at a particular time

period will affect expected future choices and outcomes for different populations. We can

then calculate various dynamic treatment effects of choices at time t on future choices

and outcomes while imposing a subset of the assumptions necessary for conditional choice

probability estimation of fully-specified dynamic discrete choice models. In particular, it

requires we correctly estimate the conditional choice probabilities given in equation (2),

the conditional expected value of the outcomes of interest, the distribution of persistent

latent state variables (Fξ(ξ)), and place some restrictions on the dependence between

error terms in the choice equation and outcomes. However, our approach does not re-

quire us to specify the student’s utility function to estimate dynamic treatment effects of

interest. Moreover, estimating the dynamic treatment effects does not require us to solve

the dynamic model.

A cost of this approach is that we are not able to calculate welfare nor consider policies

that do not directly modify the observed state vector Xt. For example, we can consider

policies that modify schooling decisions, but not policies that offer a large scholarship for

studying a STEM major.23

22We follow Heckman and Pinto (2015) in using parentheses when fixing a variable (e.g.
FX [Xt+1(Dt = 1) | ξ,Xt]) rather than conditioning on it (e.g. FX [Xt+1|Dt, ξ,Xt]). We use super-
scripts to denote fixing choices in the simpler model of Section 2, as there are only two choices.

23Another limitation that applies to our approach, and all CCP approaches, is that the state variables
must be sufficiently rich to capture the future changes of interest. For example, future expected wages
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4.2 Empirical Model of Education and Earnings

This section discusses how we map the conceptual model described in Section 4.1 to

our institutional setting. Note that in the empirical model, we replace time subscripts t

with the stages of education subscripts j. Figure 2 provides an overview of the sequence of

educational decisions we include in our sequential Roy model. Ninth-grade students make

two binary decisions whether or not to enroll in the advanced math (D10 = 1) or advanced

English (D11 = 1) courses at the ninth grade decision nodes (D1k1). Upon enrolling in

high school, students make a multinomial choice of high school track (D2(K2)). Let

k2 ∈ K2 = {0, 1, 2, 3} denote high school dropout, vocational track graduate, academic

non-STEM track graduate, and academic STEM track graduate, respectively. High school

graduates make two sequential binary choices: to apply to college (D3a) and then whether

to take the Swedish SAT (D3b), which was optional for college applications. Next, students

make a series of 12 multinomial choices of which major-college programs they want to list

on their application (D3c). The college application is modelled using the exploded-nested-

logit model described in the next section. The central admissions system determines the

first program that is above the threshold and the student is admitted to that program.

Finally, the student makes one additional binary choice on whether to enroll in the first

program to which they are admitted (D3d). Let k3 ∈ K3 = {0, 1, ..., Nfield} denote the

field of study and type of degree, where k3 = 0 denotes no enrollment in college. Let

D3(K3) summarize the initial enrollment after the application process.

Once enrolled in college, students make another multinomial choice to switch field,

D4(K4).24 This is important as many students switch major after the initial enrollment.

Let k4 ∈ K4 = {1, ..., Nfield} denote the final field of study and type of degree. Finally,

enrolled students make a binary decision whether to graduate or not in their final field of

study and type of degree (D5k5), where k5 = k4 ∈ K4. Let j ∈ J denote the decision node

in the education model and s ∈ S denote the final schooling level (high school, college

dropout or college graduate).

If students do not enroll in college (D3(K3) = 0), they enter the high school labor

market and earn Y1k2 . If they enroll in college (D3(K3) > 0), but do not graduate

(D5k5 = 0), they enter the labor market for college drop outs and earn Y2k5 , otherwise

they enter the labor market for college graduates and earn Y3k5 , where k5 = D4(K4).

The choices of high school track and final enrollment are characterized by the max-

from a given choice need to depend on the state variables included. Therefore, the model may not be
well-suited for some counterfactuals.

24Allowing for switching and dropout is key because of the importance of information revelation and
learning about skills after initial college enrollment (Altonji, 1993; Arcidiacono, 2004; Stinebrickner and
Stinebrickner, 2012, 2013; Wiswall and Zafar, 2015; Arcidiacono et al., 2025).
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Figure 2: Sequential Model of Education Specialization Choice and Earnings

4 Labor Markets:
High School (Ysm)
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(a) Model Diagram

F (ν) Mms D1k1 D2 GPA & SAT D3a−3d D4 D5k5 Yms

Skills (θ) x x x x x x x x x
Observables (X) x x x x x x x x
Types (ν) x x x x x x x
Ninth-grade Adv.courses (D1) x x x x x x
High School Track (D2) x x x x x
Instruments (Z) x x
High School GPA & SweSAT x x
Initial Enrollment (D3) x

(b) Structure of Models

Notes: Panel (a) shows a diagram of the sequential choice model used in this paper and panel (b) shows how
each model depends on various elements of the state space, including previous choices. Observables include
indicators for high school or college degree of each parent, average disposable family income child age 5-18,
strength measure, fitness measure, and average family income of students at the grade school they attended.
Within-School-Across-Cohort instruments (Z) are included for high school track choices (D2) relative to ninth
grade cohort choices and college application choices (D3c) relative to the high school track cohort choices.
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imization of a latent variable Ijk, where individual i subscripts are suppressed. Let Ijk

represent the perceived value associated with the choice of high school track (j = 2), or

final degree type and field (j = 4). The conditional choice probability for choice kj is

then

Pr(Dj = kj) =

∫
1

{
arg max

kj∈Kj
{Ijkj} = kj

}
dGε(εj) for j ∈ {2, 4}

where Dj(·) denotes the individual’s multinomial choice. The perceived value for each

choice is a function of observable state variable (Xjkj) including previous choices, choice-

specific instruments that do not enter the outcome models (Zjkj), a finite dimensional

vector of unobserved skills θ, a finite dimensional vector of unobserved types υ, and an

idiosyncratic error term εjkj , which is unobserved by the econometrician:

Ijkj = βEjkjXjkj + γjkjZjkj + λEjkjθ + αEjkυ + εjkj for kj ∈ Kj and j ∈ {1, ..., 5}.

See Figure 2b for details about how previous choices and instruments enter each decision

node.

4.2.1 College Application Model

In this section, we introduce a model of ordinal rankings of major-college choices.

Swedish students submit ranked lists of up to twelve major-college choice pairs, where

there are hundreds of potential alternatives in each year. The student with the highest

admissions score is admitted to their first choice, and the student with the next highest

score is admitted to their first choice if there is still space, otherwise they are admitted

to their next ranked choice. For our cohorts, admissions scores are determined primarily

by each student’s high school GPA. Let Iil be student i’s perceived value of major-college

pair l. Students choose their ranked ordered list by solving the maximization problems:

D1
3c,i(Li) = arg max

l∈L1i
{Iil},

D2
3c,i(Li) = arg max

l∈L2i
{Iil}, ...,

where Dj
3c,i(Li) denotes individual i’s jth ranked choice given their choice set Lji (i.e.

L1
i ≡ Li, L2

i ≡ Li \D1
3c,iLi), etc). We allow the choice set to vary by individual as some

competitive choices may have an ex ante zero probability of admission given a student’s

admission score.25

25Artemov et al. (2020) show that students do not rank certain alternatives even if they strictly
dominate other choices, because they do not expect to be admitted. Fack et al. (2019) discuss how to
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We describe the student’s problem as an exploded mixed nested logit model, where

we group major-college pairs into major groups or nests, k3 ∈ K3. The latent utility of

major-college alternative l ∈ L(k3) for student i is then

Iil = fk3(Xi3,Zi,θi,υi) + δil + εil,

where fk3(Xi3,Zi,θi,υi) depends only on variables that describe nest k3. These variables

differ over nests but not over alternatives within each nest. The within-nest utility of

major-college pair l for a student is δil, which captures differences in college and ma-

jor characteristics (expected income, utility of major/college, etc) within a nest. The

alternative-specific utility δil may also represent location-dependent and student-specific

preferences.

Three main assumptions are needed for an identification strategy that is tractable for

estimation:

A1 : Utility of a major-college pair within a nest depends on geographic region, applica-

tion scores (i.e. GPA and SweSAT scores), and qualifications (i.e. high school track)

used for admissions. Let gi denote a geographic region × GPA × SweSAT score ×
high school track bin. The within-nest utility of major-college pair l depends only

on the bin gi:
26

δil ≡ δl(gi).

A2 : An individual’s consideration set in nest k3, denotedBik3 , only depends on whether

the application scores (i.e. GPA and SweSAT scores) are above or below the ex-

pected admissions threshold:27

Bik3 ≡ Bk3(GPAi, SweSATi).

A3 : The error terms, εil, are distributed type-I generalized extreme value.

Proposition 1 Under assumptions A1-A3, fk3(Xi3,Zi,θi,υi) is identified by estimating

the conditional choice probabilities of the outer nest with correction terms that depend only

estimate preferences when truth-telling is only a weakly dominant strategy.
26Appendix Figure A.2 shows the 15 geographic regions we use along with the locations of the uni-

versities. Appendix Figure C.2 shows an example of geographic preferences for engineering programs of
students who live in two different regions.

27Following the approach of Kirkebøen et al. (2016), Appendix Figure C.2 shows that there is a large
increase in admissions when just crossing the GPA admissions threshold for a focal major. Appendix
Table C.2 shows large jumps at both the GPA and SweSAT thresholds when modeled jointly.
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on the share of applications going to each program within bin gi:

ln
(
P
[
D1

3c,i ∈ Bk(GPAi, SweSATi)|D1
3c,i ∈ Bk, gi

])
.

See Appendix Section D.1.2 for the proof.

4.2.2 Labor Market Outcomes

We model schooling-specific labor market outcomes which similarly depend on back-

ground characteristics, the individual’s vector of unobserved skills, and a vector of latent

types that affects education decisions and outcomes. Labor market outcome m of indi-

vidual i with final education s is given by:28

Yism = βYsmXis + λYsmθi +αYsmυi + ηism, (3)

where Xis includes indicators for ninth grade specializations and, if they enrolled in

college, high-school specialization choices. See Figure 2 for a description how previous

choices enter each model.

4.3 Estimation Strategy

We now turn to how we estimate the model of sequential education choices and their

relationship with labor market outcomes as specified in the previous section.

4.3.1 Exclusion Restrictions

Our identification strategy relies on exclusion restrictions in high school and col-

lege application decisions that identify the distribution of unobserved heterogeneity (Sec-

tion 4.3.2). We exploit variation in program popularity across cohorts within schools,

which we attribute to differential recruitment efforts. High school and college recruiters

visit schools annually to promote their programs, and particularly charismatic (or un-

charismatic) recruiters can make programs more (or less) attractive to entire cohorts.

Following the peer-effects literature, we construct within-school-across-cohort (WSAC)

instruments for ninth grade advanced course choice, high school track, and college field

applications.29 Let P
kj
−icp represent the proportion of student i’s classmates in cohort c

28The 18 final schooling states are 4-year college graduates in eight major groups, college graduates in
4 short (2-3 year) major groups, college dropouts from 4-year and short programs, high school graduates
from the three tracks, and high school dropouts. See Section 3.1 for more details on education categories.

29Originally proposed in Hoxby (2000), see Cattan et al. (2023) for a recent example studying the
effect of classmates with elite parents.
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and school program p who make choice Dj = kj. For example, for each STEM track high

school student, we calculate the fraction of their classmates (within school-cohort-track)

who list engineering as their first college choice. We estimate the following model for

each choice Dj = kj:

Wicp(kj) = β1P
kj
−icp +X ′icpβ

kj
2 + γkjc + αkjp + δkjp c+ η

kj
icp, (4)

where Wicp(kj) indicates whether student i makes choice kj, γ
kj
c are cohort fixed effects,

α
kj
p are school-program fixed effects, and δ

kj
p c capture program-specific time trends.30

Validating the Exclusion Restrictions. Appendix Table C.1 shows our estimates of

β1 for high school track and college application choices. This may be due to an aggregate

shock, like a particularly effective recruiter coming to the school, or because a popular

student in the cohort chooses a program. Column (1) of Table C.1 shows that classmates’

choices strongly predict individual choices. While we do not need to identify peer effects

per se, there are mechanisms that may change the choices of classmates that violate the

exclusion restriction. For example, the exclusion restriction could be violated if cohort

composition affects student skills or if a new teacher influences both cohort skills and

choices. We test for such violations in two ways: First, in column (2) we control for indi-

vidual skills using ninth-grade GPA (for high school choices) or military enlistment scores

(for college choices). The instrument’s predictive power remains unchanged, suggesting

individual skill differences do not drive the results. Second, in column (3) we control

for cohort average skill using the same measures. Again, the instrument coefficient re-

mains stable or increases, indicating that cohort-level skill variation does not explain the

relevance of the instrument. These robustness checks support our interpretation that

WSAC variation captures recruitment-driven popularity shocks rather than skill-related

confounds, validating our exclusion restriction.

4.3.2 Identification of Unobserved Heterogeneity (Types)

While we account for a rich set of observables, latent skills, and past education choices,

there may be unobserved confounders that drive both education choices and outcomes.

As discussed above, we model these potential confounders through the inclusion of latent

types. The instruments shift similar individuals to different specializations in high school

and college, allowing us to identify the role of unobserved types in education choices and

adult earnings.

30We residualize P
kj

−icp to construct instruments Z
kj

j for the perceived value of choice kj in our decision

model (Section 4.2): P
kj

−icp = X ′icpβ
kj

2 + γ
kj
c + α

kj
p + δ

kj
p c+ ε

kj

icp. We use Z
kj

ij = ε̂
kj

icp as instruments.
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For example, consider an individual i who takes an academic STEM track in high

school, majors in engineering in college, and earns a high income as an adult. A similar

individual in the same school i′ might find themselves in a ninth grade cohort where

the instrument shifts them to an academic non-STEM track. If individual i′ goes on to

major in engineering and earn a similar income as individual i, then we know that the

preference for engineering and possibly other unobservables drive the strong correlation

between high school track and major choice (i.e. the type will be important) rather

than the high school track changing preferences and perceived values. Now imagine a

different pair of similar individuals applying to college. Changes in the college major due

to instrument variation will be informative about whether the college major has a causal

effect on earnings. Furthermore, comparisons can be made between individuals who are

shifted from major k to k′ and individuals who are shifted from k′ to k. Differences in the

change in earnings identifies comparative advantage due to the unobserved heterogeneity.

In this way, identifying unobserved types from the exclusion restrictions is a key element

of our identification strategy.

4.3.3 Estimation and Model Fit

The model is estimated via maximum likelihood, as described in Appendix D.2. Ap-

pendix F presents the estimated parameters of the model and Appendix D.3 documents

that the model accurately predicts the patterns in the data. Treatment effects and coun-

terfactuals are then estimated through simulation. Standard errors and confidence in-

tervals are constructed via bootstrap, where the model is re-estimated and simulated for

501 bootstrap samples.

We estimate the model with eight types.31 Appendix D.4 shows how the types strongly

sort into high school tracks and college majors. Figure D.2 shows how each type sorts into

only a few majors, playing an important role in explaining the persistence of programs

within a college application. Types 5, 6, and 8 sort mostly into the STEM majors, while

Types 1, 3, and 7 are students studying social science, business, and law. Combining

Figure D.2 with the model estimates in Tables F.13 and F.14, we find important sorting on

gains by type, capturing an important source of unobserved heterogeneity. For example,

Type 5 has a large comparative advantage (about 0.2 log points) in wages as an engineer

or science graduate compared to other types. Likewise, Type 2 earns more as a doctor and

Type 4 has an advantage as a teacher. We interpret the types as partially representing

occupational preferences of students, but likely they also capture motivation and other

unobserved skills.

31Adding a ninth type to the model did not significantly improve the fit or change the results, but
substantially increased the computational burden.
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5 Results

In this section, we use the estimated model to study the complementarities between

skills, high school track, and post-secondary education decisions. First, we provide evi-

dence on how individuals sort into high school track and final education based on their

background, skills, and latent types. Second, we calculate treatment effects of high

school tracks, highlighting important heterogeneous effects and quantifying selection on

gains. Third, we provide direct evidence of dynamic complementarities by decomposing

treatment effects into a direct effect, changes in college choices, and dynamic complemen-

tarities between high school and college choices. Lastly, we use the model to simulate

two counterfactual policies designed to promote STEM education at different points in

the educational trajectory.

5.1 Sorting and Heterogeneous Returns

The goal of this section is to highlight the rich heterogeneity in family background

and skills that we observe across students and how this heterogeneity is meaningful for

high school choices, college choices, and earnings.

Determinants of High School and College Choices Table 2 characterizes how

individuals sort into high school tracks and final education. Even in “egalitarian” Sweden

we find stark differences in background in both educational attainment and sorting into

specializations. For high school track, we see that those who drop out have the lowest

family income as a child, are the most likely to have a parent who dropped out of high

school (55%), and are least likely to have a parent who graduated from college (16%).

Those in the vocational track had somewhat higher family income, were less likely to

have parents who dropped out of high school, and were more likely to have a parent who

graduated from college. This pattern continues as we move from the vocational track to

the academic non-STEM track, and from the academic non-STEM track to the academic

STEM track. We also find the same sorting pattern on skills. High school dropouts

have the lowest levels of skills, with cognitive skills 0.36σ below average, grit 0.68σ below

average, and interpersonal skills 0.11σ below average. The average skills monotonically

increase as we move between tracks, with those in the academic STEM track having the

highest average level of all three skills.

The bottom panel in the data characterizes how individuals sort into final education

levels. Here, the sorting patterns are more nuanced. For example, those majoring in

business have similar levels of grit and higher interpersonal skills than those majoring

in science and computer science, but lower cognitive skills. On average, humanities
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majors have higher cognitive and grit skills than those education majors, but notably

lower interpersonal skills. Those majoring in medicine, the most competitive major,

have high levels of all three skills, while those majoring in health sciences have the

highest level of interpersonal skills, but relatively low cognitive skills and grit compared

to other college graduates. We also see sorting on parental income and education. For

example, those majoring in the most competitive majors, medicine and law, also have the

highest average family income while growing up, and are the most likely to have parents

who graduated from high school. These differences by final education specialization

reflect preferences, admissions constraints, enrollment, and selection into graduation. See

Appendix Figures B.2 and B.3 to see how skill sorting patterns change at application,

enrollment, and graduation stages.

Lastly, the final two columns report the most common latent type in each high school

track and level of final education, as well as the share in that category with that type.

As discussed in Section 4, these latent types capture residual correlation between choices

and outcomes not explained by skills and covariates and are estimated from our model.

We also find sorting based on these latent variables. For example, 57% of those majoring

in law are estimated to be type 0, which is also the most common type for those in the

academic non-STEM track in High School, and for those who major in social sciences and

non-STEM 3-year degrees in college. Similarly, 45% of those majoring in 4-year business

degrees and 48% of those majoring in 3-year business degrees are estimated to be type

2. 69% of Health Sciences and 45% of those studying medicine are type 1. While these

types are difficult to interpret directly, the sorting patterns highlight that they play an

important role in sorting and often cluster in logical ways.

Labor Market Returns to Multidimensional Skills As described in Section 4.2.2,

we estimate separate earnings models for each final level of education, allowing the returns

to skills to differ by education and specialization. By estimating separate models for each

final schooling state, we can investigate the complementarities between college major and

skills in the labor market. Figure 3 shows the estimates of λ̂Ysm for workers with four-year

college degrees. In general, all three skills have large and positive returns in the labor

market, but there is a great deal of heterogeneity. For example, education majors have

relatively low returns to skill, where increasing any of the three skills by one standard

deviation increases wages by around 2.5 percent. In contrast, business majors have the

largest returns to all three skills. What is perhaps surprising is the difference in patterns

in returns to the different skills across majors. For example, the three skills have similar

returns for social science majors, while interpersonal skills have more than twice the

return compared to cognitive skills and grit for science and computer Science majors.
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Table 2: Sorting into high school tracks and final education

Covariates Skills and Latent Types
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High School Track:

Dropout 0.09 2.64 0.55 0.16 -0.35 -0.68 -0.11 1 0.244
Vocational 0.51 2.77 0.48 0.21 -0.20 -0.26 -0.03 5 0.227
Academic Non-STEM 0.18 3.29 0.27 0.48 0.13 0.31 0.07 0 0.288
Academic STEM 0.22 3.33 0.22 0.52 0.51 0.63 0.04 7 0.300

Final Education:

HS Dropout 0.09 2.64 0.55 0.16 -0.35 -0.68 -0.11 1 0.244
HS Vocational 0.43 2.75 0.50 0.18 -0.26 -0.27 -0.03 5 0.243
HS Academic Non-STEM 0.08 3.22 0.30 0.42 -0.06 0.26 0.13 0 0.356
HS Academic STEM 0.04 3.13 0.29 0.39 0.21 0.40 0.14 7 0.305
College Dropout (short) 0.06 3.06 0.31 0.40 0.29 0.12 -0.04 7 0.362
College Dropout (long) 0.06 3.23 0.24 0.50 0.47 0.28 -0.02 4 0.204
Non-STEM (short) 0.01 3.20 0.24 0.52 0.20 0.36 -0.05 0 0.286
Business (short) 0.00 3.27 0.29 0.43 0.20 0.44 0.13 2 0.478
STEM (short) 0.05 3.13 0.30 0.41 0.30 0.38 0.05 7 0.443
Health Sciences 0.01 3.10 0.28 0.49 0.04 0.18 0.21 1 0.688
Education 0.02 3.07 0.28 0.45 0.08 0.43 0.12 3 0.678
Humanities 0.00 3.18 0.21 0.58 0.42 0.58 -0.26 6 0.233
Social Sciences 0.01 3.36 0.17 0.61 0.31 0.45 -0.05 0 0.367
Business 0.02 3.61 0.20 0.56 0.33 0.58 0.12 2 0.454
Law 0.01 3.68 0.15 0.66 0.53 0.57 0.15 0 0.570
Science and Comp-Sci 0.02 3.27 0.20 0.58 0.56 0.55 -0.11 5 0.559
Engineering 0.06 3.53 0.16 0.61 0.70 0.72 0.03 4 0.475
Medicine 0.01 3.76 0.11 0.74 0.78 0.89 0.12 1 0.445

Notes: This table characterizes how individuals sort into high school track (top panel) and final education
(bottom panel). The first column reports the share of individuals in our data with that final level of education
or high school track. The columns under “Covariates” report the means of childhood family income, an indicator
for if either of their parents did not graduate from high school, and an indicator for if either of their parents
has a college degree. The columns under “Skills and Latent Types” report the average cognitive, grit, and
interpersonal skills, the modal latent type, and the share of individuals in that final education (or high school
track) with that latent type. The skill measures are the factor scores for the individuals in our data, which have
mean zero and are measured in standard deviations of the population. The latent types are from the full model,
which has eight potential latent types (numbered 0-7 here).

Indeed, one of the more surprising findings is that wages vary more with interpersonal

skill than with cognitive skill for science, math, and engineering majors.32

32Appendix Figure E.2 shows patterns for the discounted present value of income. Appendix Fig-
ures A.3–A.6 estimates a number of linear models between wages and skills or between wages and high
school track by college major. Fixed effects for institution, college program, municipality are added to
show that the heterogeneity in skill and HS track are not driven by specific programs, institutions, or
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The prior figures show that the returns to specific education choices depend heavily on

the skills of the students. This may be further compounded by differences in the loadings

on the latent types and covariates. To better characterize the heterogeneity in returns, we

use the model to calculate the proportion of individuals who would select a given major if

they were simply maximizing their expected earnings. To do this, we create a sample of

one million synthetic workers by drawing a vector of observables from our data (Xi) and

then drawing latent skills from the factor distribution (θ ∼ Fθ(θ; γ̂θ)) and finally drawing

a latent type from the probability function of latent types conditional on the latent skills

(υ ∼ Pυ(υ|θ; γ̂υ)).
33 For each of the synthetic workers, we calculate their expected earn-

ings in the different final schooling states (E[Ysm|X,θ,υ] = βYsmX + λYsmθ +αYsmυ) and

then record which schooling state has the highest and second highest expected earnings

for that worker (s∗m(X,θ,υ) = arg max
s
{E[Ysm|X,θ,υ]}). This accounts for the full het-

erogeneity in worker background/observables, skills, and latent types. Table 3 shows the

proportion of college applicants in the simulation that would rank each major first and

second in expected log wages.Clearly, there is no absolute ranking of majors by expected

earnings. The model suggests a large portion of the sample would expect to earn the

most through studying business (31%) or engineering (28%), but five other majors also

represent the expected log-wage maximizing choice for at least one percent of students,

ranging from Social Sciences to shorter STEM degrees. The table also shows the pro-

portion ranking each major second in terms of expected log wages, again demonstrating

substantial heterogeneity in the returns to majors.

5.2 Causal Effects of High School Track

Building on the analysis of the role of high school choices and skills in Section 5.1, this

section uses the generalized Roy model estimated in Section 4 to study the causal effects of

high school specialization decisions on subsequent post-secondary education choices and

labor market earnings. In particular, we focus on the heterogeneous impacts of high school

specialization decisions and how the returns to these decisions vary based on students’

multidimensional skills. Specifically, we estimate the gains from changing high school

track from academic non-STEM to academic STEM, vocational to academic STEM, and

from vocational to academic non-STEM. We estimate the treatment effects of high school

track on college enrollment, college graduation, and log wages. For each margin and

outcome, we use the model to calculate the average treatment effect (ATE), the average

municipalities.
33Recall that our latent skills are residuals and the probability of each type depends on these la-

tent skills. In other words, the skill factors represent the variation in latent skill after accounting for
observables and the latent types capture remaining residual correlations between choices and outcomes.

28



Figure 3: Returns to Skills across Majors (λ̂sm) for Log Wages
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Notes: This figure shows the returns to skills (λ̂sm) for four-year graduates from equation (3). Each
sub-panel shows the estimates for different four-year majors. The first (red) bar shows the loading
on cognitive skills, the second (blue) bar shows the loading on grit skills, and the third (green) bar
shows the loading on interpersonal skills. This figure shows estimates for log wages, while Appendix
Figure E.2 shows estimates for log present discounted value of disposable income. Error bars show
bootstrapped 95% confidence intervals.

treatment effect for those with low skills, the average treatment effect for those with high

skills, the treatment on the untreated (TUT), the treatment on the treated (TT), and the

average marginal treatment effect (AMTE).34 The TT is the average treatment effect for

those who chose the first choice, while the TUT is the average treatment effect for those

who chose the second choice in each pairwise comparison. The AMTE is the average

treatment effect for those close to indifferent between the two choices.

Each treatment effect is calculated via simulation by integrating over the relevant

population’s individual-specific treatment effects as discussed in Section 4. These treat-

ment effects do not restrict the future decisions of the individuals. Fixing a high school

track can then influence future decisions through the change in the state variables as

shown in Section 4.1.

The first two panels of Figure 4 show the estimated treatment effect of high school

34High skilled is defined as being in the top 50% of all three skills, while low skilled is defined as being
in the bottom 50% of all three skills. The AMTE is calculated via simulation. A simulant is marginal
if the difference in the perceived value (Ijkj

) is less than 0.05 standard deviations of the difference in
idiosyncratic shocks (in absolute value), and the top choice is one of the two choices being considered.
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Table 3: Fraction Ranking each Major First and Second in Expected Log Wages

Ranking

1st 2nd

Business 0.31 0.21
Engineering 0.28 0.21
Medicine 0.18 0.18
Law 0.12 0.15
STEM (short) 0.05 0.09
Business (short) 0.03 0.10
Social Sciences 0.03 0.04
Science and Comp-Sci 0.00 0.01

Notes: The table reports the proportion of individuals who applied to college ranking a major first or
second in terms of expected log wage. Appendix Table E.1 reports the same for expected log present
discounted value of disposable income. All majors which have a value of 0.01 or higher in any column
are reported. A sample of one million synthetic workers are created by drawing a vector of observables
from the data, drawing a vector of latent skills from the estimated factor distribution, and drawing
a latent type from the type probability distribution. The expected log wage is calculated for each
synthetic worker using estimates of equation (3) (E[Ysm|X,θ,υ] = βYsmX + λYsmθ +αYsmυ).

track on college outcomes. The top panel shows the treatment effects on college enroll-

ment, and the middle panel shows the treatment effects on college graduation. Each

sub-panel reports the treatment effects for one specific comparison: academic STEM vs

non-STEM, academic STEM vs vocational, and academic non-STEM vs vocational track.

We find that the treatment effects on enrollment and graduation are positive on all three

margins, with larger effects on enrollment than graduation, and evidence of selection on

gains for either academic vs vocational specializations.

The average treatment effects for college enrollment are the largest for academic

STEM vs vocational. We estimate that students who are marginal between the STEM

and vocational track are 37 percentage points more likely to enroll in college. The treat-

ment effects for academic STEM vs non-STEM and academic non-STEM vs vocational

are smaller, with AMTEs of around 14 percent. We also find that high-skilled students

have larger impacts from choosing academic STEM or non-STEM over vocational tracks.

For example, the impacts on enrolling in college from specializing in academic non-STEM

vs vocational are nine percentage points larger for high-skilled vs low-skilled students.

Finally, we find evidence of sorting on gains, with the TT on enrollment being larger

than the TUT for academic STEM vs vocational (34 vs 30%) and academic non-STEM

vs vocational (16 vs 11%).

The treatment effects of high school track on college graduation (middle panel) ac-

count for the fact that many students who enroll in college do not graduate. Specifically,
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the graduation treatment effects counterfactually set high school track but then allow

students to make enrollment, switching, and graduation decisions. We find that there

is more heterogeneity in graduation decisions than enrollment decisions, and that the

treatment effects noticeably attenuate. For example, the AMTE of academic STEM vs

vocational is 19.6 percentage points compared 37.5 on enrollment. In addition, the gap

between the ATE for low- and high-skilled students grows, as does the gap between the

TT and TUT estimates.

The bottom panel of Figure 4 shows similar results for log wages. These treatment

effects include the direct effects of high school track and the indirect effects of high

school specialization on post-secondary education choices and their returns. We estimate

an AMTE of 0.11 on log wages for academic STEM vs vocational, and approximately 0.06

for academic STEM vs non-STEM and academic non-STEM vs vocational. Similar to

college graduation, we see selection on gains at all three margins, with the TT being 0.02

to 0.09 larger than the TUT. For STEM vs vocational and academic vs vocational returns

are larger for students with high skills. For STEM vs academic track, the estimates are

larger for low skilled students.35 These differences are statistically significant at the

5% level except for Academic STEM vs non-STEM. The patterns are also similar when

considering the log discounted present value of disposable income, though the effects

are somewhat larger (see Appendix Figure E.3). Interestingly, for academic non-STEM

vs vocational, the TT and ATE for high-skilled students are positive, while the point

estimates for TUT and the ATE for low-skilled students are negative.

The prior estimates are of the full treatment effects of switching high school tracks,

inclusive of how those early decisions then influence later application, enrollment, switch-

ing, and graduation decisions in college. We also consider the direct effect of high school

track on earnings conditional on the final education outcome. Appendix Figure E.1 plots

the estimated dynamic complementarities of switching high school tracks within each

final education outcome. For example, the figure shows that counterfactually switching

high school tracks from vocational to academic STEM would increase log wages for engi-

neers by 0.06, while switching from academic non-STEM to STEM track would increase

log wages of engineers by 0.12. Across most final education levels, the STEM track has

higher returns than the vocational track. Switching from vocational to academic non-

STEM would raise log wages for many final education levels, such as science and computer

science, social studies, business, and law. Yet, it would also lower wages in engineering

and the health sciences, demonstrating important dynamic complementarities.

35Our finding that many students sort on comparative advantage in high school tracks is broadly
consistent with Dahl et al. (2023). Like us, they find that returns to the two STEM lines are generally
highest, ranging from 7% to only 0.7%, depending on the next best alternative.
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Figure 4: Treatment Effects: College Enrollment, Graduation, and Log Wages
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Notes: Figure shows the estimated treatment effects for the three high school track margins on college enrollment
(top), college graduation (middle), and log wage (bottom). “ATE” is the average treatment effect, estimated
for everyone with at least a high school degree. “AMTE” is the average marginal treatment effect, and is
estimated for those near indifferent between the two high school tracks. “ATE (low)” and “ATE (high)” report
treatment effects for those with low and high baseline skills. High-skilled is defined as being in the top half of all
three skill distributions, while low-skilled is defined as being in the bottom half of all three skill distributions.
“TT” is the treatment on the treated, while “TUT” is treatment on the untreated. The AMTE, TT, and TUT
are all estimated for those chose one of the two high school specializations being considered. Error bars show
bootstrapped 95% confidence intervals.
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5.3 Decomposing the Effect of High School Track

The treatment effects discussed in the prior section are a combination of direct ef-

fects, changes in future education choices, and dynamic complementarities between high

school and college investments. In this section, we decompose the treatment effect using

Equation 1 in Section 2, but allowing for the larger set of final college outcomes from

the full model (e.g., college dropouts from different types of programs and college major

graduates).

In Figure 5, we use our model to estimate and decompose equation (1) for the average

treatment effect of the full population (ATE), the treatment effect for the treated (TT),

and the treatment effect for those that are at the margin between the two specializations

in high school (AMTE). For the academic STEM vs non-STEM, over half of the treatment

effects are due to the dynamic complementarities between studying STEM in high school

and the majors the students choose in college, with direct effects and changes in college

choices each accounting for around 20%. For academic STEM vs vocational, dynamic

complementarities are also large (31-34% of the total effect), but changes in college choices

also play a large role, accounting for 44-52% of the total effect. As previously shown in

Figure 4, for academic non-STEM vs vocational, the ATE is much smaller than the TT

and AMTE. Moreover, the direct effect is the largest component for the TT and AMTE,

followed by changes in college choices, and then dynamic complementarities.

Figure 6 studies how the decomposition of the average treatment effect on the treated

varies by baseline skills. Each row represents one of the pairwise comparisons: academic

STEM vs non-STEM, academic STEM vs vocational, and academic non-STEM vs voca-

tional. Each column represents a different skill: cognitive, grit, and interpersonal. Each

figure then shows how the decomposition of the overall treatment effect varies by decile

of baseline skill. For academic STEM vs non-STEM, the overall effects modestly decline

in the deciles of each skill, which is driven by a decline in the direct effect. For cog-

nitive and grit skills, the decline in direct effects is partially offset by growing dynamic

complementarities. For academic STEM vs vocational, the overall treatment effects are

increasing in deciles of all three skills, which is driven by a combination of increasing

direct effect and, for cognitive and grit skills, dynamic complementarities. Finally, for

academic non-STEM vs vocational, dynamic complementarities are small and vary little

with skill deciles, while direct effects are increasing in all three skills, and the component

from changes in college choices is increasing for cognitive skills and grit.
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Figure 5: Decomposition of Treatment Effects
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Notes: This figure shows the decomposition of the treatment effect of choosing: academic STEM vs. non-STEM,
academic STEM vs. vocational, and academic non-STEM vs. vocational high school track in equation (1) for
three populations: the Average Treatment Effect for the full population (ATE), the Treatment effect for the
Treated (TT), and the Average Marginal Treatment Effect (AMTE) for those that are at the margin between
the two high school specialization choices. Error bars show bootstrapped 95% confidence intervals.

5.4 Counterfactual Policies Targeting STEM education

This section uses the model to estimate and interpret the impacts of two counter-

factual policies designed to promote STEM education. The first policy targets students

who did not pursue the academic STEM track in high school, but only marginally pre-

ferred their high school choice over the STEM track. We then consider how inducing

these marginal students into the STEM track impacts future education decisions and

earnings. The second policy targets students who have chosen to apply to college and

provides small incentives to apply to STEM programs (science and computer science,

engineering, medicine, health sciences, and 3-year STEM programs). We then look at

how these incentives change the post-secondary outcomes of the marginal students, and

the treatment effects for the marginal students whose post-secondary education outcomes

change due to the incentives. Both policy counterfactuals correspond to a dynamic model

where the policy change was not known in advance. For example, in the second policy

counterfactual, students’ high school choices do not respond to the incentives to apply to

STEM programs in their college application. Similarly, these policy counterfactuals are

partial equilibrium and do not account for potential changes in returns from changing

the supply of certain levels of education to the market.
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Figure 6: Decomposition of the Average Treatment on the Treated by Skill Decile
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Notes: This figure plots the total Treatment Effect on the Treated (TT) and its decomposition in
equation (1) conditional on skill deciles. The rows show different comparisons of counterfactual high
school tracks: academic STEM vs academic non-STEM, academic STEM vs vocational, and academic
non-STEM vs vocational. The columns show comparisons for the three skill dimensions: cognitive,
interpersonal, and grit. Error bars show bootstrapped 95% confidence intervals.

5.4.1 Encouraging the STEM Track in High School

Figure 7a shows how inducing marginal students into the academic STEM track in

high school changes final educational attainment. Each bar shows the percentage point

change in that level of final education attainment among marginal students induced into

the STEM track. As may be expected, we see a reshuffling of terminal high school

graduates across tracks with a large drop in terminal vocational high school degrees, a

drop in those with terminal academic non-STEM high school degrees, and a small drop

in high school dropouts. We similarly see a large increase in terminal STEM-track high

school graduates. We also see a general increase in post-secondary enrollment. The largest

increase is a seven percentage point increase in the share of students with engineering

degrees. The next largest is a five percentage point increase in those with a 3-year STEM

degree, and we see a small increase in those with a science/ computer science degree.

We also find reductions in some majors, such as law, though these are empirically small.
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Lastly, we see a notable increase in college dropouts from short and long programs.

Although pushing students to take the academic STEM track in high school increases

the number of students majoring in engineering and science/computer science in college,

taking the STEM track in high school may not increase wages. Table 4 reports the

average treatment effects for marginal students induced into the STEM track. The rows

break down the results for everyone, students who do not change their final education

attainment after being induced into the STEM track, and students who change their

final education attainment. The first three columns show the AMTE and the AMTE

for low-skilled and high-skilled students. The second three columns show the proportion

of marginal students who gain (i.e., have positive treatment effects). On average, the

treatment effect on log wage is 0.09 and does not notably differ by skill. The wage gains

are driven by those who change final schooling level, who have gains of 0.11 compared

to 0.04 for those who do not. We also estimate that the gains are largely positive across

the distribution. We estimate that 71% of the affected marginal students have higher

expected wages, though this proportion is larger for those who do not change education.

Putting the pieces together, the average gains are smaller for those who don’t change

final education levels, but the proportion who gain is higher. This result highlights that

switching tracks causes many students to pursue more lucrative post-secondary options,

but changes in post-secondary education from the policy can also lower wages.

Table 4: Effects of STEM Track (log wages, marginal students)

AMTE Prop. Gaining

Group All Low Skill High Skill All Low Skill High Skill

All 0.086 0.094 0.077 0.710 0.716 0.705
(0.007) (0.012) (0.009) (0.015) (0.019) (0.021)

No Change in Final Edu 0.040 0.045 0.036 0.910 0.952 0.873
(0.005) (0.006) (0.006) (0.041) (0.033) (0.052)

Change in Final Edu 0.108 0.114 0.102 0.613 0.623 0.604
(0.010) (0.016) (0.012) (0.011) (0.021) (0.012)

Notes: Table reports the treatment effects from the counterfactual policy of inducing marginal students
into the STEM track in high school. Results are reported for all students, students who do not change
their final education, and students who change their final education. “Low Abil” (“High Abil”) are
students in the bottom (top) half of all three skills. The last three columns report the proportion
of marginal students who have positive wage gains. Bootstrapped standard errors are reported in
parentheses.

Finally, we study the impacts on one particular group of individuals. Specifically, we

estimate the impact of the policy on marginal students who went on to earn an engineering

degree. Table E.2 shows the AMTE for those induced into different majors, conditional

on what their final education would have been in absence of the policy. For example,
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Figure 7: Effects of Policies on Sorting into Final Education
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(a) Marginal Effect of Academic STEM Track on Sorting
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(b) Marginal Effect of Encouraging STEM Applications on Sorting

Notes: Figure (a) shows how switching marginal individuals into the high school STEM track reallo-
cates them across different education outcomes. The analysis is restricted to those who do not take
the academic STEM track but are marginal to this choice and the height of the bar is the percent-
age point change in the number of marginal students in that final education from switching them
to the academic STEM track. Figure (b) shows how education choices change for those induced to
change their final education through a policy incentivizing enrollment in STEM college majors (STEM
(short), Health Sciences, Science and Comp-Sci, and Engineering). The analysis is restricted to those
who change education levels due to the policy. The height of the bars is the percentage point change
in the number of compliers in that education level. Error bars show bootstrapped 95% confidence
intervals.
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we find positive gains for most of those who switch tracks due to the policy and then

graduate with an engineering degree. The estimates are largest for those induced out of

terminal high school degrees, education, or health science. Yet, we do not find positive

AMTEs for everyone. Those who the policy moved from 3-year or 4-year business degrees

have negative AMTEs, though they are not statistically significant.

5.4.2 Encouraging Applications to STEM Programs in College

The second policy targets students who have chosen to apply to college, and provides

small incentives to apply to STEM programs (science and computer science, engineer-

ing, medicine, and short STEM programs). This induces marginal students to list more

STEM programs on their college applications. Figure 7b shows how the policy affects

students’ final education, with each bar reporting the percentage point change in that

final education category. Encouraging STEM applications results in a large increase in

graduation from short STEM programs, moderate increases in graduation from engineer-

ing and science and computer science programs, and a small increase in graduation from

medicine programs.36 We also see an increase in students enrolling in short college pro-

grams, but dropping out. Those now enrolling in STEM degrees draw broadly from the

other programs, with the largest reduction coming from education and business, followed

by short non-STEM degrees and social sciences.37

Table 5 reports the AMTE and the proportion of affected students gaining from the

policy. The rows report results for all students who were affected by the policy (All), those

who took academic STEM track in high school, and those who didn’t take the academic

STEM track. Similar to Table 4, the columns report the AMTE and the proportion

gaining for all, low-skilled, and high-skilled students. On average, the policy has small to

moderate wage gains with an AMTE of 0.025, notably smaller than the AMTE for our

policy encouraging academic STEM specialization in high school. Similarly, we estimate

that only 54 percent of those affected by the policy gain from it. The estimates are broadly

similar when split by low- and high-skill students, with high-skill students having slightly

larger gains. Interestingly, the AMTE is 0.05 for those who studied academic STEM in

high school, compared to 0.013 for those who did not. This difference further shows that

dynamic complementarities are important.

Appendix Table E.2 shows the AMTE of the policy for those who were induced to

switch into different majors, broken down by the level of education they would have

otherwise obtained. For example, we see that the returns for engineering are positive for

36Note that we assume the admissions thresholds remain fixed in all simulations.
37In the model, applicants must be admitted to a program and then decide to enroll, which drives

small changes in the number of terminal high school graduates.
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Table 5: Effects of Encouraging STEM College Applications (log wages, switchers)

AMTE Prop. Gaining

Group All Low Skill High Skill All Low Skill High Skill

All 0.025 0.018 0.027 0.535 0.526 0.540
(0.006) (0.009) (0.011) (0.006) (0.009) (0.014)

STEM HS Track 0.050 0.041 0.026 0.555 0.545 0.562
(0.010) (0.013) (0.032) (0.008) (0.012) (0.038)

Not STEM HS Track 0.013 -0.005 0.027 0.525 0.507 0.538
(0.006) (0.01) (0.011) (0.006) (0.010) (0.014)

Notes: Table reports the treatment effects for those induced to switch final education levels from
the counterfactual policy of encouraging STEM college major applications among those who apply to
college. Results are reported for all students, students who took the STEM track in high school, and
students who did not take the STEM track in high school. “Low Abil” (“High Abil”) are students
in the bottom (top) half of all three skills. The last three columns reports the proportion of students
who switched final education levels who have positive wage gains. Bootstrapped standard errors are
reported in parentheses.

most individuals, but negative for those induced out of four-year business programs.

Overall, the two counterfactual policies suggest that targeting marginal STEM track

students in high school has higher returns than encouraging applications to STEM pro-

grams during the college application process. Moreover, the impact of the college policy

is larger for those who took the STEM track in high school. Both suggest that targeting

students in high school may be more effective.

6 Conclusion

In this paper, we study how initial endowments and high school specialization com-

plement post-secondary education choices, and how these complementarities then affect

labor market outcomes. Using Swedish data, we find that dynamic complementarities

play a large role in the returns to high school specialization. We document large but het-

erogeneous returns from specializing in STEM in high school, and show that around half

of the return comes from complementarities between high school and college investments.

The paper makes three main contributions. First, we build a dynamic generalized

Roy model to jointly model high school and college education decisions and labor market

outcomes. The model includes both specialization decisions (i.e., track and major) and

attainment in high school and college. Using the model, we document rich sorting on

multidimensional skills into high school track, followed by sorting on both skills and high

school track into college majors. Second, we use the model to estimate and decompose

treatment effects from specializing in specific high school tracks in high school. We find

that the returns to the academic STEM track are high on average, but do not benefit
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everyone. We then decompose the treatment effects into a direct effect, changes in college

enrollment and major decisions, and complementarities between high school and college

choices. For the academic STEM track, complementarities account for around 60% of the

wage gains, with changes in college and direct effects each accounting for around 20%.

Third, we use the model to evaluate two counterfactual policies designed to promote

marginal STEM enrollment either in high school or when applying to college. We find

that both colleges increase the number of STEM enrollees and graduates in college, but

that the high school policy creates larger wage gains and benefits a greater share of those

affected.

Our findings highlight a fundamental trade-off in education system design: early

specialization can enhance returns through dynamic complementarities for students who

maintain a consistent specialization path, but may change options and reduce returns for

students who switch fields. This suggests that policies encouraging early specialization

should be accompanied by flexibility for students to adjust their education paths as they

discover their comparative advantages. More broadly, our findings demonstrate that

understanding the interplay between skills, the timing of specialized investments, and

the constraints in education systems is crucial for developing human capital policies that

improve both individual outcomes and economic efficiency.
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Appendix for:

Complementarities in High School and College
Investments

John Eric Humphries Juanna Schrøter Joensen Gregory F. Veramendi

A Data Appendix

In this Appendix, we provide more details on the education data classifications and

the high school and college institutions. First, we provide more details on data sources

and variable definitions. Second, we describe the high school environment. Third, we

describe the college environment. Finally, we provide more details on how the present

value of income is calculated.

A.1 Description of Data Sources

We combine data from several Swedish administrative registers for the cohorts born in

1974-76 and their parents. We merge the ninth grade, high school, and higher education

registers to obtain longitudinal education histories. Finally, we merge the data from

the education registries with the Wage Structure data (“Lönestrukturstatistik”) and the

longitudinal integration database for health insurance and labour market studies (LISA)

to obtain information on earnings, employment, occupation, and additional background

variables. The administrative data for the full population is quite detailed from 9th grade

through college, and we supplement these data with the Evaluation Through Follow-up

survey (ETF72) focusing on 3rd through 9th grade for the cohort in third grade in the

1981/82 academic year.

In the following, we describe the data sources and variable definitions in more detail.

Appendix A.1.1 describes the labor market data, Appendix A.1.2 the education registers

and survey data, while Appendix A.1.3 describes the Swedish scholastic aptitude test

data and Appendix A.1.4 describes the military enlistment archives. We use most of the

same data sources as in our companion paper (Humphries et al., 2024) and the following

data source description shares a significant overlap.

A.1.1 Labor Market Data

Wages: The Wage Structure (“Lönestrukturstatistik”) data is a yearly snapshot

that is intended to get an overview of the evolution of the wage structure in the economy.
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The data is collected by SCB and employer organizations through a survey of employers

during a sample week once a year. The sampling differs by sector. The public sector

has the broadest coverage, since data is collected for everyone employed in the state,

regions, and municipalities during the sample week. For the private sector, however, only

a subset of employers are surveyed about their workers during the sample week. The two

key variables we use to construct our primary outcome measure are full-time-equivalent

(FTE) wages (measured by MLON ) and actual work time as a fraction of full-time

(measured by TJOMF ). Our primary outcome is log monthly wages for full-time workers

in 2010-2013. We report wages in 1000s SEK and real 2010 prices.

Disposable Income: Our secondary outcome variable is log present value of dis-

posable income. We observed the yearly disposable income, which is gross labor income

from all employment spells minus all net taxes (based on the variable DispInk) in the

LISA database. We also report earnings in 1000s SEK and real 2010 prices, and Section

A.4 details how we calculate the present value.

A.1.2 Education Data

9th grade registry: We use data on course choices to define two binary indicator

variables for whether an individual took a more advanced track in math and/or English

or not. We also use data on Swedish, English, math, physical education (PE) grades, and

grade point average (GPA) as proxies for skills in the measurement system described in

more detail in Appendix B.

High school registry: Similarly to the 9th grade registry, we focus on specialization

choices and performance measured by Swedish, English, math, PE grades, and GPA. We

classify high school students into three tracks: vocational and two academic tracks in

non-STEM and STEM. A reform implied that the high school graduating cohorts from

1996 and earlier are classified according to the high school lines they attend, while those

graduating in 1997 are classified according to the programs they attend. The academic

STEM track consists of the science (76) and technical (80,81) lines pre-reform, the science

program (49) is also added during the transition years, and the science program (NV)

for the post-reform cohorts. The academic non-STEM track comprises the humanities

line (74), business (72), and social science lines (78) pre-reform, the arts program (19)

and social science program (53) are also added during the transition years, and the arts

program (ES) and the social science program (SP) for the post-reform cohorts. Finally,

all vocational high school lines and programs are grouped in the vocational high school

track.
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Higher education registry: From the Higher Education registry, we use data on

acquired college degrees. We classify all academic programs into two levels (≤ 3 years;

≥ 4 years) according to the SUN2000Niva code and nine fields (1. Education; 2. Hu-

manities and Art; 3. Social Sciences and Services; 4. Math, Natural, Life and Computer

Sciences; 5. Engineering and Technical Sciences; 6. Medicine; 7. Health Sciences, Health

and Social Care; 8. Business; 9. Law) according to the SUN2000Inr code. The Swedish

education nomenclature (SUN2000) codes build on the International Standard Classifica-

tion of Education (ISCED97), and we group programs into majors according to the first

digit of the SUN2000Inr code. We single out Business and Law from the Social Sciences

major and Medicine from the Health Sciences major to better compare to previous liter-

ature. Some 3-year programs have few students, so we group them into STEM (Science,

Math, Engineering) and non-STEM (Humanities, Social Science) majors. Students in the

3- and 4-year Education and Health Sciences majors (excluding medicine) look similar

on observables and labor market outcomes, so these are grouped together.

We merge these registers to the “Evaluation Through Follow-up” surveys (ETF72

and ETF77) administered to 3rd, 6th, and 10th grade students by the Department of

Education and Special Education at Gothenburg University.38 This survey was admin-

istered to a random sample of the oldest and youngest cohorts in our population who

were sampled when in 3rd grade in the 1981/82 and 1986/87 school-years, respectively.

These individuals are mostly born in 1972 (10% sample) and 1977 (5% sample). This

data includes extensive measures of aptitude and achievement tests, absenteeism, special

education and tuition, and grades in various courses through compulsory schooling, as

well as extensive student and parent surveys related to student achievement, confidence,

inputs, grit, and interpersonal skills.

A.1.3 Swedish Scholastic Aptitude Test

The Swedish Scholastic Aptitude Test (SweSAT) is a norm-referenced test whose pri-

mary aim is to assess the test-takers’ general aptitude for studies. The test should, as

fairly as possible, rank the applicants with respect to expected success in higher educa-

tion. The test consists of 160 multiple choice questions and is given twice a year, once

in spring for admission the following autumn, and once in autumn for admission the

following spring. All sections are taken in one day, lasting between 7.5-8 hours including

breaks between each section and a lunch break. Apart from the English language reading

comprehension test, all sections are taken in Swedish. The result on the test is normalized

to a scale between 0.0 and 2.0, with 0.05 increments. Around a third of those enrolled in

38Härnqvist (1998) and Giota (2006) provide additional details on the construction of the survey.
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college in the cohorts we study are admitted based on high performance in the SweSAT.

We have data on the overall test scores and sub-scores on every attempt through the De-

partment of Applied Educational Science at Ume̊a Universitet. The sub-scores include:

Vocabulary; Swedish and English Reading Comprehension; General Information; Data

Sufficiency; Interpretation of Diagrams, Tables, and Maps.

A.1.4 Military Enlistment Archives

The Military Enlistment archives contain cognitive test scores, psychological assess-

ments, health and physical fitness measures collected during the entrance assessment

at the Armed Forces’ Enrollment Board. The enlistment was mandatory for all Swedish

males at age 18 until 2010, thus for all males in our sample who are Swedish citizens. The

entrance assessment spans two days. Each conscript is interviewed by a certified psychol-

ogist with the aim to assess the conscript’s ability to fulfill the psychological requirements

of serving in the Swedish defense, ultimately in armed combat. The set of personal char-

acteristics that give a high score include persistence, social skills, and emotional stability

(Lindqvist and Vestman, 2011).

A.2 High School Application to Graduation

In this Appendix, we describe the high school application behavior, admission deci-

sions, and high school graduation outcomes. Applications are submitted by March 15,

admission decisions are communicated in July, and retention is measured as enrolled on

September 15, 1990; i.e. about a month after initial enrollment. Graduation is measured

as highest acquired high school degree in the high school register.

We have data on applicants for high school enrollment 1990-91 academic year from

the Swedish Archives (Riksarkivet). We focus on males 15-19 years old at the time of

application to mimic our estimation sample as closely as possible. We restrict the sample

to those with non-missing ninth grade GPA (missing for 636 young males). The sample

consists of 68,753 young males of which 41,116 are in our estimation sample.

Table A.1 shows that application behavior, admission decisions, and high school grad-

uation outcomes differ by ninth grade GPA quartile. The overall admission probability is

increasing in GPA as 61%/79%/91%/96% in GPA quartile Q1/Q2/Q3/Q4 get admitted.

Most of those admitted, get admitted to one of their top 2 priorities. 35%/51%/78%/94%

in GPA quartile Q1/Q2/Q3/Q4 get admitted to their first priority school-line, but these

differences are smaller if looking within preferred line (64%/74%/89%/97%) or track

(98%/93%/95%/98%). Most admitted students are therefore enrolled in their preferred

high school track. Graduation rates from the preferred high school track are also high
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for all GPA quartiles (96%/89%/88%/92%). Although those in the lowest (highest) GPA

quartile are much more (less) likely to attend the vocational track and much less (more)

likely to attend the academic STEM track. On average, students list 2.3 alternatives on

their application. Very few individuals exhaust their list as most list 1-3 priorities, which

may indicate that applicants know that they will likely be admitted to one of their top

choices.

Table A.2 shows descriptives by ninth grade GPA quartile and preferred high school

track. This table also reveals a lot of persistence from application to admission to grad-

uation. Persistence is generally higher for those with high GPA, and that those with

higher GPA are also more likely to be admitted to their preferred school-line within all

tracks. To the extent there is switching, those with lowest (highest) GPA become even

more (less) likely to acquire a vocational high school degree and less (more) likely to

acquire an academic STEM high school degree.
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Table A.1: High School Application, Admission, and Graduation; by ninth grade GPA.

Ninth grade GPA quartile

Q1 Q2 Q3 Q4

Admitted 0.61 0.79 0.91 0.96

Admitted, first priority 0.35 0.51 0.78 0.94
Admitted, second priority 0.16 0.18 0.10 0.02
Admitted, third priority 0.07 0.08 0.03 0.00

Retained, first priority 0.39 0.55 0.77 0.89
Retained, second priority 0.15 0.15 0.08 0.02
Retained, third priority 0.07 0.06 0.02 0.01

Line, first priority
Preference (1=”listed in all priorities”) 0.63 0.60 0.59 0.60
Same as second priority 0.16 0.19 0.16 0.07
Same as third priority 0.12 0.12 0.11 0.05
Admitted 0.64 0.74 0.89 0.97
Graduated 0.61 0.67 0.79 0.87

Track, first priority
Preference (1=”listed in all priorities”) 0.98 0.91 0.81 0.79
Same as second priority 0.95 0.82 0.67 0.60
Same as third priority 0.94 0.78 0.53 0.32
Admitted 0.98 0.93 0.95 0.98
Graduated 0.96 0.89 0.88 0.92
Vocational 0.96 0.83 0.56 0.20
Academic non-STEM 0.02 0.11 0.25 0.27
Academic STEM 0.01 0.06 0.19 0.53

Admitted, Vocational Track 0.98 0.86 0.55 0.17
Admitted, Academic non-STEM Track 0.01 0.08 0.25 0.27
Admitted, Academic STEM Track 0.01 0.06 0.20 0.56

Graduated, Vocational Track 0.98 0.90 0.62 0.21
Graduated, Academic non-STEM Track 0.01 0.07 0.23 0.29
Graduated, Academic STEM Track 0.01 0.03 0.15 0.50

Graduated 0.64 0.87 0.93 0.96

N 15,736 16,643 17,536 18,838

Note: The Table shows descriptive statistics of high school application, admission, and graduation by
ninth grade GPA quartile. Sample: Applicants for high school enrollment 1990-91 academic year. Males
15-19 years old at the time of application. Applications are submitted by March 15, admission decisions
are communicated in July, and retention is measured as enrolled on September 15, 1990; i.e. about a
month after initial enrollment. Graduation is measured as highest acquired high school degree. The table
displays fractions of applicants within each ninth grade GPA quartile, however, the fraction admitted
(graduated) by high school track (vocational, academic non-STEM, and academic STEM) is displayed
conditional on admission (graduation).
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Table A.2: High School Application, Admission, and Graduation; by ninth grade GPA and first Priority High School Track.

High School Track High School-Line

Admitted Graduated Admitted Retained Graduated

Ninth GPA HS Track 1st priority % GPA Q Vocational
Academic Academic Vocational Academic Academic

1st priority Second priority 1st priority Second priority 1st prioritynon-STEM STEM non-STEM STEM

GPA, Q1
Vocational 96.30 99.56 0.26 0.18 99.51 0.36 0.12 35.10 16.04 39.24 15.10 62.74
Academic, non-STEM 2.28 53.03 42.42 4.55 70.85 25.51 3.64 17.88 11.17 21.51 16.20 21.05
Academic, STEM 1.42 37.24 0.69 62.07 70.89 7.59 21.52 31.25 7.14 35.71 11.61 18.35

GPA, Q2
Vocational 82.68 98.66 0.73 0.62 98.63 0.98 0.40 53.91 17.91 56.49 14.83 72.98
Academic, non-STEM 11.29 33.11 60.82 6.07 48.41 48.47 3.13 29.06 20.49 43.11 20.70 42.57
Academic, STEM 6.03 20.17 2.93 76.89 48.58 11.24 40.18 47.76 12.96 57.53 13.56 35.75

GPA, Q3
Vocational 55.63 97.74 1.32 0.94 96.92 1.97 1.11 76.98 9.88 73.80 7.73 84.64
Academic, non-STEM 24.95 5.97 92.12 1.91 17.58 80.25 2.17 76.10 10.83 79.98 8.04 74.87
Academic, STEM 19.42 5.34 2.98 91.67 18.82 10.60 70.58 80.82 9.40 83.17 8.08 66.15

GPA, Q4
Vocational 19.92 96.96 1.67 1.37 92.36 4.10 3.54 82.17 4.74 73.97 4.21 84.76
Academic, non-STEM 27.23 0.49 98.31 1.20 4.97 92.40 2.64 94.46 1.42 89.47 1.93 88.35
Academic, STEM 52.85 0.40 0.79 98.80 3.43 5.23 91.34 97.48 1.28 94.93 1.95 87.00

Note: The first column of the Table shows the percentage within each ninth grade GPA quartile that states each high school track (vocational, academic
non-STEM, and academic STEM) as first priority at the time of application. We define an application cell by ninth grade GPA quartile and high school
track listed as first priority. The subsequent columns display the percent (row %) of applicants in each application cell who make the relevant transition
in terms of the percentage admitted and graduating from each high school track, as well as the percentage admitted and retained in the first and second
application priority. Sample: Applicants for high school enrollment 1990-91 academic year. Males 15-19 years old at the time of application. Applications
are submitted by March 15, admission decisions are communicated in July, and retention is measured as enrolled on September 15, 1990; i.e. about a
month after initial enrollment. Graduation is measured as highest acquired high school degree.
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A.2.1 Additional High School Descriptives

Table A.3: Curriculum of Academic High School Tracks

High School Track Math, Sci, Tech Social Sci Languages, Arts

Academic non-STEM
Business line 0.125 0.156 0.313
Social Science line 0.203 0.297 0.391
Humanities line 0.141 0.297 0.453

Academic STEM
Technical line 0.563 0.109 0.219
Science line 0.406 0.172 0.313

Notes: This table displays the average fraction of time devoted to each set of courses in the mandated
core curricula over the 3-year duration of each academic high school line. Business line students also
have an average fraction of 0.266 devoted to occupation-specific studies. Otherwise, the omitted
category of courses includes physical education and optional courses that vary within high school line.
Note that all academic 3-year high school lines have 32 hours of instruction per week.

Table A.4 shows the most common lines within each high school track. Most vo-

cational track students are in the 2-year lines for Electrical telecommunications (15%),

Construction (15%), and Automotive engineering (9%). Most academic non-STEM track

students are in the Business (54%) and Social Science (38%) lines, while the academic

STEM students are split between the Technical (67%) and Science (31%) lines.
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Table A.4: Specialization of Students in each High School Track

High School Track Fraction of track Line Code

Vocational
Electrical telecommunications line (2-years) 0.15 14
Construction line (2-years) 0.15 04
Automotive engineering line (2-years) 0.09 20
Social line 0.08 46
Production engineering line 0.07 60
Business and office line 0.06 24
Industrial-technical line 0.05 28
Food technology line 0.04 34
Automotive engineering line (3-years) 0.04 22
Operation and maintenance line 0.03 10
Electrical telecommunications line (3-years) 0.03 16
Wood technology line 0.02 58
Natural resources line 0.02 38
Construction line (3-years) 0.02 06
Health care line 0.01 62
Business line 0.01 26

Academic non-STEM
Business line (3-years) 0.54 72
Social Science line (3-years) 0.38 78
Humanities line (3-years) 0.04 74
Social Science program (3-years) 0.03 53

Academic STEM
Technical line (3-years) 0.67 80
Science line (3-years) 0.31 76
Science program (3-years) 0.02 49

Notes: This table displays the fraction of students attending each of the most common lines (rank
ordered) within each high school track. All line codes refer to those in place for the graduating cohorts
in 1990-96. Programs 53 and 49 were early pilot programs in Social Science and Science, respectively,
that replaced the corresponding lines (78 and 76) in 1997. All vocational lines are 2-years apart from
22, 16, and 06 that are the three 3-year versions of the three most popular lines which enroll 39% of the
vocational track male students.
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A.3 College Application to Graduation

In this Appendix, we describe the college application, admission, enrollment, and

graduation decisions in more detail.

College admission is largely centrally administered. A college applications consist of

a list with up to 20 rank-ordered alternatives, and students also submit their high school

diploma and transcripts. An alternative consists of a program (e.g. Economics) and a

college (e.g. Stockholm University). Universities/colleges are responsible for specifying

competence requirements and selection within the regulation of the Higher Education Act,

while the Swedish National Agency for Higher Education (now UHR) is a supervisory

authority that checks that colleges comply with the regulatory framework. If there are

more seats than applicants, then all qualified applicants are admitted. Qualifications are

determined by high school courses, and may vary by programs and colleges. The basic

requirement is a high school degree, and each college-program has additional requirements

related to prerequisite high school courses and grades. When there are more applicants

for a college-program than there are seats, the selection is based on the following three

main admission groups are screening students on: (i) high school GPA, (ii) SweSAT test

score, and (iii) SweSAT test score with additional admission points for relevant labor

market experience. Each college-program has a fixed number of seats available in each

admission group: at least one third has to be admitted through group (i), at least one

third has to be admitted through groups (ii) and (iii), and at most a third through

alternative admission rules; predominantly personal interviews. GPA and SweSAT cut-

offs in each admission group are determined by a serial dictator mechanism. Each student

is admitted to the highest priority they are above the cut-off for in one of the admission

groups. After admission decisions are communicated in the first round, students who are

evaluated to be qualified based on their high school transcripts but are not admitted to

their preferred alternative can be wait-listed and admitted in a second round in August

as seats can become available if someone does not accept their initial allocation.

Using microdata on college applications and admissions from the Swedish National

Archives (Riksarkivet), we can directly assess to which extent admission probabilities

are taken into account when applying. Figure A.1 reveals that students with higher

high school GPA have higher admission probabilities, apply to more selective programs,

and are more likely to be admitted to their more preferred programs. We also find

that applications differ substantially by geographic cluster. Figure A.2 singles out the

location of the leading colleges and universities by one international and one national

ranking, the Shanghai Jiao Tong Academic Ranking of World Universities (ARWU) and

the commonly used Swedish Fokus ranking. We see substantial geographic variation.
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Students are particularly likely to prefer the college that is closest to home when there is

a highly ranked college within the cluster.

A.3.1 Additional College Descriptives

In this subsection, we provide additional descriptive statistics on those who initially

enroll in and acquire a degree in each college major. Table A.5 and Table A.6 show the

high school grades, high school track choices, and SweSAT test scores,while Table A.7

shows the age at education decision nodes, switching, and graduation behavior. Finally,

Table A.8 and Table A.9 show the five most common programs within each college major.

This table also shows the SUN2000Inr codes that correspond to each of the fields.
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Figure A.1: College Application and Admission.
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(b) Fraction Admitted to Priority X or higher

Note: This Figure describes how many priorities are listed on college applications and which priority
individuals were admitted to, by hich school GPA quartile. Panel (a) shows the fraction of applicants
within each GPA quartile listing at least X priorities, where X ∈ {1, ..., 12}. Panel (b) shows the
fraction of applicants within each GPA quartile that is admitted to priority X or a higher/preferred
priority, where X ∈ {1, ..., 12}.
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Table A.5: High School and SweSAT by College Major of Initial Enrollment

College Major

3-year or shorter 4-year or longer

No Enroll
non-STEM Business STEM HealthSci Educ Humanities SocSci Business Law Sciences Engineer Medicine

(HS grad)

Grades, High School
GPA -0.32 0.32 0.28 0.12 0.18 0.24 0.55 0.47 0.66 1.02 0.59 1.09 1.64
Math -0.22 -0.02 0.16 0.15 -0.06 0.02 0.07 0.10 0.45 0.49 0.48 0.93 1.02
English -0.19 0.37 0.12 -0.07 0.17 0.15 0.49 0.39 0.43 0.90 0.47 0.65 1.33
Swedish -0.29 0.50 0.28 0.07 0.23 0.34 0.76 0.58 0.62 1.14 0.54 0.87 1.59
Sports -0.13 0.02 0.23 0.10 0.24 0.29 -0.03 0.24 0.37 0.30 0.17 0.29 0.54

High School Track
Vocational 0.78 0.34 0.24 0.28 0.52 0.35 0.23 0.23 0.12 0.12 0.17 0.09 0.06
Academic non-STEM 0.15 0.47 0.60 0.11 0.29 0.43 0.48 0.55 0.68 0.57 0.26 0.06 0.13
Academic STEM 0.07 0.20 0.17 0.61 0.19 0.22 0.29 0.23 0.20 0.32 0.58 0.85 0.81

SweSAT
Test-taker 0.10 0.78 0.85 0.72 0.86 0.77 0.75 0.88 0.91 0.89 0.88 0.83 0.92
SweSAT score of test-takers

Total -0.50 0.13 -0.24 -0.27 -0.32 -0.20 0.25 0.17 0.11 0.64 0.32 0.56 1.14
Vocabulary -0.14 0.33 -0.14 -0.25 0.12 0.04 0.35 0.24 0.02 0.54 0.19 0.16 0.74
Swedish Reading Comprehension -0.39 0.22 -0.06 -0.12 -0.23 -0.04 0.38 0.27 0.24 0.66 0.34 0.57 1.03
English -0.39 0.26 -0.08 -0.17 -0.28 -0.05 0.44 0.29 0.31 0.74 0.39 0.58 1.06
General Information -0.35 0.23 -0.16 -0.24 -0.06 -0.03 0.34 0.28 0.08 0.51 0.25 0.37 0.89
Data Sufficiency -0.46 -0.12 -0.11 0.17 -0.40 -0.20 -0.03 -0.01 0.15 0.34 0.40 0.72 0.80
Interpret Diagrams, Tables, and Maps -0.45 -0.05 0.00 0.09 -0.45 -0.14 0.08 0.09 0.27 0.40 0.35 0.69 0.81

N students 59,173 1,966 1,033 11,125 1,778 3,699 789 1,433 3,375 954 3,277 7,521 499
Fraction of sample 0.61 0.02 0.01 0.12 0.02 0.04 0.01 0.01 0.03 0.01 0.03 0.08 0.01
Fraction of college enrollment 0.05 0.03 0.30 0.05 0.10 0.02 0.04 0.09 0.03 0.09 0.20 0.01
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Table A.6: High School and SweSAT by College Major of Final Degree

College Major

3-year or shorter 4-year or longer

Non-STEM Business STEM HealthSci Education Humanities SocSci Business Law Sciences Engineer Medicine

Grades, High School
GPA 0.42 0.40 0.28 0.27 0.29 0.71 0.66 0.83 1.14 0.75 1.10 1.58
Math 0.11 0.30 0.26 0.00 0.07 0.25 0.23 0.58 0.58 0.58 0.97 1.02
English 0.36 0.15 -0.03 0.22 0.11 0.55 0.54 0.50 0.92 0.49 0.54 1.21
Swedish 0.54 0.35 0.19 0.31 0.37 0.90 0.81 0.76 1.23 0.68 0.85 1.53
Sports 0.10 0.41 0.18 0.32 0.36 -0.03 0.21 0.44 0.38 0.21 0.36 0.57

High School Track
Vocational 0.28 0.18 0.27 0.47 0.33 0.22 0.16 0.08 0.08 0.12 0.06 0.05
Academic non-STEM 0.49 0.61 0.15 0.30 0.44 0.49 0.54 0.64 0.57 0.22 0.05 0.13
Academic STEM 0.23 0.21 0.59 0.23 0.23 0.29 0.31 0.27 0.35 0.66 0.88 0.82

SweSAT
Test-taker 0.81 0.87 0.72 0.86 0.78 0.72 0.91 0.90 0.90 0.88 0.82 0.93
SweSAT score of test-takers

Total 0.06 -0.15 -0.24 -0.30 -0.27 0.36 0.28 0.10 0.60 0.37 0.44 1.03
Vocabulary 0.20 -0.12 -0.26 0.06 -0.06 0.44 0.26 -0.04 0.43 0.17 0.02 0.63
Swedish Read. Comprehension 0.19 0.00 -0.08 -0.17 -0.07 0.47 0.41 0.26 0.69 0.42 0.50 0.93
English 0.19 0.03 -0.15 -0.21 -0.10 0.46 0.47 0.30 0.73 0.44 0.48 1.00
General Information 0.23 -0.14 -0.21 -0.03 -0.08 0.43 0.33 0.08 0.48 0.29 0.27 0.80
Data Sufficiency -0.10 0.03 0.19 -0.34 -0.21 0.06 0.09 0.18 0.35 0.46 0.71 0.78
Interpret Diag/Tables/ Maps 0.00 0.09 0.14 -0.35 -0.14 0.14 0.19 0.32 0.44 0.41 0.68 0.75

N students 1,565 477 5,465 1,518 2,396 514 922 1,959 748 1,754 6,055 630
Fraction of sample 0.02 0.00 0.06 0.02 0.02 0.01 0.01 0.02 0.01 0.02 0.06 0.01
Fraction of college enrollment 0.04 0.01 0.15 0.04 0.06 0.01 0.02 0.05 0.02 0.05 0.16 0.02
Fraction of college graduates 0.07 0.02 0.23 0.06 0.10 0.02 0.04 0.08 0.03 0.07 0.25 0.03
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Table A.7: Age, Choices, and Outcomes by College Major

College Major

3-year or shorter 4-year or longer

No enroll
Non-STEM Business STEM Health Sci Education Humanities SocSci Sciences Business Law Engineer Medicine

(HS grad)

Age at
9th grade graduation 16.03 16.00 16.01 16.01 16.01 16.01 15.99 16.00 16.00 16.00 15.99 15.99 15.98
High school graduation 18.66 18.92 18.98 18.92 18.87 18.90 18.98 19.03 19.01 19.06 19.10 19.04 19.10
First academic college enrollment 24.03 23.66 21.68 25.18 23.84 22.40 22.85 21.63 21.90 22.14 20.62 22.24

College Outcomes
Stayed enrolled, initial college major 0.76 0.57 0.81 0.91 0.82 0.55 0.60 0.68 0.74 0.80 0.84 0.91
Graduated, initial college major 0.37 0.17 0.41 0.70 0.56 0.32 0.31 0.37 0.41 0.61 0.63 0.85
College graduate 0.55 0.53 0.55 0.77 0.69 0.70 0.65 0.62 0.62 0.75 0.74 0.92

Labor Market Outcomes
Monthly Wages 33,909 40,380 37,962 30,756 28,568 34,035 37,581 37,568 48,022 46,885 44,689 54,110
PV Disposable Income (1000s) 4,822 6,342 6,214 5,348 4,868 4,474 5,579 5,671 7,155 7,822 6,618 8,711

N students 59,173 1,966 1,033 11,125 1,778 3,699 789 1,433 3,277 3,375 954 7,521 499
Fraction of sample 0.61 0.02 0.01 0.12 0.02 0.04 0.01 0.01 0.03 0.03 0.01 0.08 0.01
Fraction of college enrollment 0.05 0.03 0.30 0.05 0.10 0.02 0.04 0.09 0.09 0.03 0.20 0.01

Age at
9th grade graduation 16.00 15.99 16.01 16.01 16.01 16.00 16.00 16.00 16.00 15.99 15.99 15.98
High school graduation 18.93 18.97 18.91 18.88 18.89 18.94 19.05 19.00 19.08 19.11 19.03 19.10
First academic college enrollment 23.00 22.78 21.59 24.17 23.18 22.71 22.27 21.12 21.43 21.54 20.36 21.53
Last academic college degree 28.66 22.75 26.29 29.32 27.31 29.06 28.85 27.61 27.72 27.77 26.73 27.89

College Outcomes
Stayed enrolled, initial college major 0.47 0.36 0.83 0.82 0.86 0.50 0.48 0.68 0.70 0.78 0.79 0.67

Labor Market Outcomes
Monthly Wages 35,917 45,961 38,954 31,252 28,119 31,564 38,295 37,980 51,842 48,470 46,154 52,402
PV Disposable Income (1000s) 5,199 7,299 6,755 5,664 5,188 4,068 5,503 5,960 7,912 8,945 7,168 8,892

N students 1,565 477 5,465 1,518 2,396 514 922 1,754 1,959 748 6,055 630
Fraction of sample 0.02 0.00 0.06 0.02 0.02 0.01 0.01 0.02 0.06 0.01 0.02 0.01
Fraction of college enrollment 0.04 0.01 0.15 0.04 0.06 0.01 0.02 0.05 0.05 0.02 0.16 0.02
Fraction of college graduates 0.07 0.02 0.23 0.06 0.10 0.02 0.04 0.07 0.08 0.03 0.25 0.03
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Table A.8: College Programs within Major, First Enrollment

College Major, 1st enrollment Fraction of major SUN2000Inr Code

Non-STEM (short)
Journalism and Media Science 0.14 321
History and Archeology 0.13 225
Media production 0.10 213
Transportation 0.05 840
Sociology, Ethnology, and Cultural Geography 0.06 312

Business (short)
Business Administration, Trade and Administration (general) 0.64 340
Management and Administration 0.14 345
Purchasing, Sales, and Distribution 0.08 341
Business Administration, Trade and Administration (other) 0.08 349
Marketing 0.05 342

STEM (short)
Energy- and Electrical Engineering 0.25 522
Mechanical Engineering 0.21 521
Electronics, Computer Engineering and Automation 0.17 523
Building- and Construction Engineering 0.10 582
Computer Science and Systems Science 0.06 481

Health Sci
Nursing 0.47 723
Social work and Guidance 0.23 762
Therapy, Rehabilitation, and Dietary treatment 0.15 726
Dental care 0.05 724
Technically oriented health education 0.05 725

Education
Specialist Teacher 0.41 145
Pedagogy and Teacher education (other) 0.21 149
Teacher, primary school 0.14 144
Teacher, preschool and leisure activities 0.14 143
Teacher, vocational and practical/aesthetic subjects 0.09 146

Humanities
Foreign Language 0.21 222
History and Archeology 0.18 225
Religion 0.17 221
Music, Dance, and Drama 0.15 212
Media production 0.07 213

Social Sciences
Social and Behavioral Science (general) 0.47 310
Psychology 0.11 311
Sociology, Ethnology, and Cultural Geography 0.07 312
Transportation 0.07 840
Political Science 0.06 313

Business
Business Administration, Trade and Administration (general) 0.87 340
Marketing 0.10 345
Management and Administration 0.02 342
Business Administration, Trade and Administration (other) 0.01 349

Law
Law 1.00 380

Sciences and Computer Science
Computer Science and Systems Science 0.37 481
Mathematics and Science (other) 0.25 469
Biology and Biochemistry 0.07 421
Physics 0.06 441
Chemistry 0.04 442

Engineering
Mechanical Engineering 0.17 521
Electronics, Computer Engineering and Automation 0.17 523
Technology and Industry Engineering (general) 0.16 520
Energy and Electrical Engineering 0.14 522
Industrial Economics and Organization 0.08 526

Medicine
Medicine 1.00 721
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Table A.9: College Programs within Major, Final Graduation

College Major, final graduation Fraction of major SUN2000Inr Code

Non-STEM (short)
Journalism and Media Science 0.10 321
Political Science 0.10 313
Economics and Economic History 0.10 314
Transportation 0.10 840
Sociology, Ethnology, and Cultural Geography 0.08 312

Business (short)
Business Administration, Trade and Administration (general) 0.93 340
Business Administration, Trade and Administration (other) 0.03 349
Management and Administration 0.02 345
Banking, Insurance, and Finance 0.02 343
Purchasing, Sales, and Distribution 0.01 341

STEM (short)
Energy and Electrical Engineering 0.21 522
Mechanical Engineering 0.20 521
Electronics, Computer Engineering and Automation 0.15 523
Building- and Construction Engineering 0.12 582
Computer Science and Systems Science 0.10 481

Health Sci
Nursing 0.49 723
Social work and Guidance 0.17 762
Therapy, Rehabilitation, and Dietary treatment 0.17 726
Dental care 0.06 724
Technically oriented health education 0.05 725

Education
Specialist Teacher 0.44 145
Teacher, primary school 0.21 144
Teacher, preschool and leisure activities 0.15 143
Teacher, vocational and practical/aesthetic subjects 0.15 146
Pedagogy 0.04 142

Humanities
Music, Dance, and Drama 0.20 212
History and Archeology 0.20 225
Foreign Language 0.16 222
Religion 0.16 221
Form and Visual Arts 0.09 211

Social Sciences
Economics and Economic History 0.28 314
Political Science 0.25 313
Psychology 0.20 311
Sociology, Ethnology, and Cultural Geography 0.13 312
Library and Documentation 0.07 322

Business
Management and Administration 0.88 343
Banking, Insurance, and Finance 0.07 345
Business Administration, Trade and Administration (general) 0.04 340
Business Administration, Trade and Administration (other) 0.00 349

Law
Law 1.00 380

Sciences and Computer Science
Computer Science and Systems Science 0.38 481
Biology and Biochemistry 0.18 421
Chemistry 0.12 442
Physics 0.07 441
Earth Sciences and Geography 0.05 443

Engineering
Mechanical Engineering 0.22 521
Energy and Electrical Engineering 0.15 522
Technology and Industry Engineering (general) 0.14 520
Electronics, Computer Engineering and Automation 0.14 523
Industrial Economics and Organization 0.10 526

Medicine
Medicine 1.00 721
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Figure A.2: Maps of College Applications in Sweden and Stockholm (15 clusters)

(a) Sweden (ARWU ranking) (b) Sweden (Fokus ranking)

(c) Stockholm (ARWU ranking) (d) Stockholm (Fokus ranking)

Note: This Figure plots the 15 geographic clusters we us when modeling college applications. The figure
additionally shows the topped-ranked universities (based on ARWU ranking).
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Figure A.3: Sensitivity of the Association Between Cognitive Skills and Wages within
Final College Major

Note: This figure displays OLS estimates of λYs,θcog on cognitive skills and 95% confidence interval I-caps from log full-time

wage regressions like equation (3) within each of the 12 final college majors s given by: Yis = βYs Xi+β
Y
s,D2

D2i+λ
Y
s θi+εis,

where we additionally include fixed effects indicating categories of college programs, institutions, and municipalities in X.
Baseline controls include average disposable family income in mother’s household at child age 5-18, mother’s and father’s
education level indicators, strength, fitness, ninth grade advanced course choices, high school track choices, multidimensional
skills, college major-specific high school GPA quartiles, and the 15 geo clusters.
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Figure A.4: Sensitivity of the Association Between Interpersonal Skills and Wages within
Final College Major

Note: This figure displays OLS estimates of λY
s,θinterp on interpersonal skills and 95% confidence interval I-caps from

log full-time wage regressions like equation (3) within each of the 12 final college majors s given by: Yis = βYs Xi +
βYs,D2

D2i + λYs θi + εis, where we additionally include fixed effects indicating categories of college programs, institutions,
and municipalities in X. Baseline controls include average disposable family income in mother’s household at child age
5-18, mother’s and father’s education level indicators, strength, fitness, ninth grade advanced course choices, high school
track choices, multidimensional skills, college major-specific high school GPA quartiles, and the 15 geo clusters.
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Figure A.5: Sensitivity of the Association Between Grit Skills and Wages within Final
College Major

Note: This figure displays OLS estimates of λY
s,θgrit

on grit skills and 95% confidence interval I-caps from log full-time wage

regressions like equation (3) within each of the 12 final college majors s given by: Yis = βYs Xi + βYs,D2
D2i + λYs θi + εis,

where we additionally include fixed effects indicating categories of college programs, institutions, and municipalities in X.
Baseline controls include average disposable family income in mother’s household at child age 5-18, mother’s and father’s
education level indicators, strength, fitness, ninth grade advanced course choices, high school track choices, multidimensional
skills, college major-specific high school GPA quartiles, and the 15 geo clusters.
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Figure A.6: Sensitivity of the Association Between Academic STEM High School and
Wages within Final College Major

Note: This figure displays OLS estimates of βY
s,D2(K2)=4

on the academic STEM high school track indicator and 95%

confidence interval I-caps from log full-time wage regressions like equation (3) within each of the 12 final college majors s
given by: Yis = βYs Xi+βYs,D2

D2i+λYs θi+ εis, where we additionally include fixed effects indicating categories of college
programs, institutions, and municipalities in X. Baseline controls include average disposable family income in mother’s
household at child age 5-18, mother’s and father’s education level indicators, strength, fitness, ninth grade advanced course
choices, high school track choices, multidimensional skills, college major-specific high school GPA quartiles, and the 15 geo
clusters.
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Figure A.7: Sensitivity of the Association Between Academic Non-STEM High School
and Wages within Final College Major

Note: This figure displays OLS estimates of βY
s,D2(K2)=3

on the academic non-STEM high school track indicator and 95%

confidence interval I-caps from log full-time wage regressions like equation (3) within each of the 12 final college majors s
given by: Yis = βYs Xi+βYs,D2

D2i+λYs θi+ εis, where we additionally include fixed effects indicating categories of college
programs, institutions, and municipalities in X. Baseline controls include average disposable family income in mother’s
household at child age 5-18, mother’s and father’s education level indicators, strength, fitness, ninth grade advanced course
choices, high school track choices, multidimensional skills, college major-specific high school GPA quartiles, and the 15 geo
clusters.
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A.4 Calculating Present Value of Income

In this Appendix, we provide more details on the calculation of the present value of

income.

The 1974-1976 birth cohorts were 37-39 years old at the end of the sample period.

Thus, we must impute income until age 65 to estimate how major choices affect the

discounted present value of income. To impute income, we estimate the regressions:

ln(Yt)− ln(Yt−1) = β0 + T
′

tβT + A
′

tβA + βCDC + +DCT
′

tβTC +DCA
′

tβAC + εt

which relate income growth to year indicators, Tt, age indicators, At, an indicator for

being a college graduate, DC , and this indicator interacted with year and age indicators.

The regression is estimated using earnings data from 1990 to 2013 and is estimated on

those born between 1965 and 1980 and their fathers who were born between 1945 and

1952. Since income can be zero or negative, all non-positive values of income are set to

one before taking logs.

Using the model above, we predict earnings for everyone in our sample from the last

age they are observed to age 65. Specifically, we use the income average over the last three

years of the sample and the estimated growth rate above to simulate out each individual’s

income to age 65, assuming that market conditions remain the same as in 2013.

Given predicted income up to age 65, we then calculate the present discounted value

of wage income and the present discounted value of disposable income from ages 20 to

65 assuming the yearly discount rate β = 0.95.

B Identification and Estimation of Latent Skills

Since most proxies of skill are measured with error, we use a factor model to recover

latent skills. First, we briefly describe the identification of latent skills when some mea-

sures are taken after schooling investments have been made. Second, we describe the

specification of the measurement system.

Identification of Latent Skills If skills were directly observable, we could include

them in our models along with other observables on demographics and family back-

ground. Instead, skills need to be identified from proxies such as test scores or behavior.

In this paper, we identify latent skills using evaluations done as part of the compulsory

military enlistment and course grades in compulsory and high school. Let the measure-

ment system, M , denote a vector of measures or proxies of skills. Students may be

evaluated after they have been exposed to different types or levels of education. For
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example, students are evaluated by the military at age 18 when most are still enrolled

in different tracks in high school. Let s denote the schooling state of the student and

Mms denote the mth measure evaluated at schooling state s. We define M̃ms as latent

variables that map into observed measures Mms,

Mms =

{
M̃ms if Mms is continuous

1 (M̃ms ≥ 0) if Mms is a binary outcome.

The latent variables are assumed to be separable in observables, latent skills, and an

idiosyncratic error term

M̃ms = αms + βMmX + λMmθ + um,

where αms represents schooling-state specific intercepts for measure m, X is a vector of

observables, θ is a vector of latent skills, and um is the error term. We assume that um

are mutually independent across each m and are independent of θ, X, and the error

terms in schooling decisions and labor market outcomes.

The inclusion of the schooling-state-specific intercepts and observables in the mea-

surement system has important implications for the interpretation of the latent skills.

The term αms captures the direct effect of schooling at the time of the test. For exam-

ple, students who take STEM tracks in high school may perform better on the cognitive

evaluations given by the military due to having taken more math and science classes.

The inclusion of αms in the measurement system implies that our latent skills are mea-

sured relative to a reference schooling state (s = 0). In Appendix Section B.1, we show

that the schooling-state-specific intercepts are separately identified from differences in

how students sort across schooling states. The key assumption is that we have as many

pre-specialization measures as factors. Since pre-specialization measures have not been

affected by future investments, the conditional means of the pre-specialization measures

are informative of how students sort into different schooling paths. Any additional dif-

ference in later measures by, for example, STEM vs. vocational schooling, must be due

to the different types of skills learned in those programs beyond the skills of the students

in ninth grade.

We include observables in the measurement system to account for biases in the evalu-

ations that are due to the student’s background.39 This is not without loss of generality

as a student’s background (e.g. mother’s education) is also an important determinant of

their skills. Hence, when we report deciles of latent skills, we are measuring “residual”

latent skills. That is, the variation in latent skills that is orthogonal to the observables.

39See e.g. Neal and Johnson (1996) and Winship and Korenman (1997).
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We include the observables whenever we estimate a model with latent skills and, hence,

still capture differences across students due to both observables and latent skills.40

Specification of Measurement System Our measurement system consists of mea-

sures from the compulsory Swedish military enlistment taken at age 18 and course grade

data from ninth-grade and high school registers. We have to make some normalizations

to both identify the model and also make the factors more interpretable.41

In order to facilitate interpretation of the factors, we specify a triangular measurement

system with orthogonal factors.42 On one hand, the measures from the military data could

be treated as dedicated measures, and we would be able to use a different specification

that has correlated factors. On the other hand, it would be difficult to argue that the

grade measures are dedicated measures of a third factor and do not directly depend on

the cognitive skills that is measured in the military enlistment.

We estimate a model with three factors. The first set of measures labelled as “cogni-

tive” by the military psychologists depend exclusively on the first factor.43 The second

set of measures include the variables from the psychological evaluation performed by the

military psychologists. They provide two variables that measure “leadership” skills and

“emotional stability.” The second set of measures depend on both the first and second

factors. The last set of measures includes grades from ninth grade and high school: math

and sports grades from both ninth and tenth grades, Swedish and English from ninth

grade, and residual GPA from both ninth and tenth grades.44 This last set of measures

depends on all three factors.

The schooling states in the measurement system are (1) taking advanced English in

ninth grade, (2) taking advanced math in ninth grade, and (3) taking one of three tracks

in high school. The identification of the schooling-state specific intercepts requires three

measures that are not affected by schooling states. In our model, those are the ninth grade

Swedish grade, sports grade, and residual GPA. Table 1 summarizes the measurement

system.

40One can think of the residual latent factors as projections of the latent factors onto the orthogo-
nal component of the student characteristics and then the Frisch-Waugh-Lovell theorem should apply
(approximately).

41See Williams (2020) for more details on the identification of factor models. The location and scale
of the factors are not identified, so we assume that the factors are mean-zero (E[θ] = 0) and have unit
variance (Var[θ] = 1.0) in our population.

42A triangular measurement system is one in which the measures are partitioned into groups based
on how they depend on the factors and by design the factors are orthogonal.

43The military psychologists select about half of the enlistees to be rated on a leadership scale based
on their performance on the cognitive test scores. We include this selection as a separate measure of
cognitive skills. See Grönqvist and Lindqvist (2016) for more details on this selection.

44We include individual course grade measures as covariates in the GPA models to create the “residual
GPA” measures.
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B.1 Identification of Factor Model

In this section, we show that the effect of schooling at the time of the test (αms)

and mean skills conditional on each schooling state (µs = E[θ|S = s]) are jointly iden-

tified. This analysis builds on Hansen et al. (2004), where they show identification for

a factor model with dedicated measures.45 In what follows, we keep the dependence on

observables, X, implicit for the sake of notational simplicity.

Let there be N factors. Let S denote the set of possible schooling states at the time

the measures are taken, and let Sk ⊆ S denote the possible schooling states for measure k.

Assume that there are K measures (Mms), where the first K0 measures are taken before

any schooling decision (Sk = {0} for k ∈ {1, ..., K0}). The key identifying assumption is

that there are at least as many pre-decision measures as there are factors (i.e. K0 ≥ N).

We also assume that there are enough measures, K, to identify the loadings of an N -factor

model.46

Keeping the dependence on X implicit, we model the K measures as

Mms = αms + λkθ + uk, s ∈ Sk, k ∈ {1, ..., K}, (B.1)

where λk and θ are vectors of length N . Note that the set of schooling states differ for

different measures.

Since the loadings are independent of schooling state, the identification of the loadings

follows the standard identification arguments in the literature (See e.g. Williams 2020),

where the loadings can be identified by conditioning on one of the schooling states.

The next step is to show the identification of the intercepts αms. We normalize the

mean of each factor distribution to be zero, E[θ] = 0. Assuming that the measures are

not relevant to decisions about the schooling states, the intercepts in the first K0 models

are identified by taking expectations:

αk0 = E[Mk0] for k ∈ {1, ..., K0}.

Next, we can identify the conditional mean of each factor by taking conditional ex-

pectations of the first N models with respect to each schooling state S = s and solving

the resulting system of linear equations:

E[MN |S = s] = αN + Λµs for k ∈ {1, ..., N},
45In the Swedish setting, Carlsson et al. (2015) also show that schooling can have an effect on the cog-

nitive military test scores. Particularly the crystallized intelligence test scores (synonyms and technical
comprehension) but not to the same extent the fluid intelligence test scores (spatial and logic).

46The number of measures required depends on the number of factors, the normalizations, and over-
identifying assumptions used in the measurement system. See Williams (2020) for more details.
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whereMN is a vector of length N stacked with the first N measures (Mk0, k ∈ {1, ..., N}),
αN is a vector of length N with the already identified intercepts (αk0, k ∈ {1, ..., N}), Λ

is an N ×N matrix with the already identified loadings, and µs is a vector of length N

of the conditional means of the factors for schooling state s. Assuming Λ is invertible,

then the conditional means of the factors for each schooling state are identified:

µs = Λ−1
[
E[MN |S = s]−αN

]
, s ∈ S.

Finally, the schooling-state specific intercepts in the k ∈ {K0 + 1, ..., K} models are

identified using the conditional means of the factors and of the measures:

αms = E[Mms|S = s]− λkµs, s ∈ Sk, k ∈ {K0 + 1, ..., K}.

B.2 Sorting into High School Track and College Major

In this section, we investigate how students sort by multidimensional skills into high

school track and college major. If skills were observed, we could simply estimate the

conditional mean of each skill by high school track or college major. One approach, taken

in Table 2, calculates the average of noisy estimates of the skills for different groups of

individuals in our data. The literature has typically estimated discrete choice models

with a measurement system and simulated the models to understand the sorting patterns

(Heckman et al., 2018b). While we will use similar discrete choice models when estimating

causal effects in section 5.2, we develop an alternative approach that estimates the mean

skills for different subgroups without imposing any structure on how individuals make

education decisions. The mean latent skill in each education category can be estimated

using a set of simple linear models:

θis =
∑
s∈S

βsIs + ηis, (B.2)

where the latent factor (θis) is on the left-hand side of the equation, Is is an indicator

for an education choice, and βs are the conditional means of the latent factor for each

education state. We estimate one such model for each dimension of latent skill and set

of mutually exclusive educational states.47

47These models are estimated via maximum likelihood using the first stage measurement system as
described in section D, where we assume that ηis is normally distributed. See Appendix Section D.2 for
a description of the likelihood estimation.
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Figure B.1: Sorting into High School Track by Skills

HS Dropout HS Vocational HS Academic HS STEM
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Notes: Figure shows the average interpersonal, cognitive, and grit skills by high school track. All
skills are normalized to be mean 0 and standard deviation one for the full population.

Sorting into High School Track Figure B.1 shows how students sort into high school

track by skill. The figure shows the average levels of the three skills based on high school

track choice. All three skills have been normalized to be mean 0 and standard deviation 1

for the full population. The figure shows that there is strong sorting on grit and cognitive

skills and weaker sorting on interpersonal skills. The average cognitive skills of academic

(STEM) students are 0.18 (0.58) standard deviations above the mean, while the average

cognitive skills of vocational track students is 0.23 standard deviations below the mean.

Sorting on grit has a similar pattern but is more extreme, while there is substantially less

sorting on interpersonal skills.

Sorting into College Figure B.2 show how students sort into post-secondary decisions

by skills (left panel) and high school track (right panel). The left panel shows the average

cognitive, grit, and interpersonal skills of those who apply, enroll, and graduate from

college. skills are normalized to be mean 0 and standard deviation 1 in the population.

Those who apply to college are around 0.35 standard deviations higher in cognitive skills

and 0.4 standard deviations higher in grit. Moving from applications to enrollment sees a

large jump in cognitive skills, likely related to admissions, while moving from enrollment

to graduation sees a large jump in grit. Students also sort on interpersonal skills, but

substantially less.

The right panel shows the means of high school track indicators for those who ap-

ply, enroll, and graduate from college by high school track. Those from the vocational

track makes up around 25 percent of applicants, but only 20 percent of graduates. In

contrast, those in the STEM track make up 45 percent of applicants and over 50 percent
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Figure B.2: Sorting into College: Applications, Enrollment, and Graduation
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Notes: The left panel plots the average cognitive (red), grit (blue), and interpersonal (green) skills of
those who apply, enroll, and graduate from college. Each skill is normalized in the population to have
a mean of zero and standard deviation of one. The right panel shows the average of high school track
indicators for vocational track, academic track, and STEM track among those whose apply, enroll,
and graduate.

of graduates.

Figure B.3 builds on the prior figure by showing how students sort into applying to,

enrolling in, and graduating from specific majors. An “applying” student is assigned to

the first major they list on their application. The top panel shows sorting patterns on

skills where each sub-panel is a specific 4-year major. The skills measures have been

normalized to have a mean of 0 and standard deviation of 1 among those who apply to

college (including to 3-year majors). There are important sorting patterns on skills across

majors. For example, those who apply, enroll, and graduate in engineering tend to be high

in cognitive skills and grit, but slightly below average in interpersonal skills. In contrast,

for education majors, cognitive skills is below average, while grit is around average, and

interpersonal skills are slightly above average. Finally, for business, graduates are over

0.2 standard deviations higher in grit, but only 0.1 higher in interpersonal skills, and 0.05

higher in cognitive skills.

The bottom panel of Figure B.3 shows the proportion of applicants, enrollees, and

graduates that come from each high school track for each 4-year major. Some programs,

such as education, are somewhat balanced, with less than half coming from any of the

three tracks, while other programs are skewed, such as engineering and medicine, where

over 75 percent of graduates come from STEM tracks, or business and law where 55 to

60 percent of graduates come from non-STEM academic tracks.
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Figure B.3: Sorting into Majors: Application, Enrollment, and Graduation
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Notes: The top panel shows the average interpersonal, cognitive, and grit skills by four-year major. All
skills are normalized to be mean 0 and standard deviation one for the population of people who ever
enroll in college. The three bars shades of each color show the average for those that apply, those that
enroll, and those that graduate in the major. A applying student is assigned to the first major they
list on their application. The bottom panel shows the proportion of applicants/enrollees/graduates
that come from each high school track (e.g. E[Track = STEM|Applied = 1]).
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C Instruments for High School and College Choices

C.1 Within-School-Across-Cohort Instruments
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Table C.1: The Effect of Peers’ Choices on Own Choices (within-school-across-cohort)

(1) (2) (3)

High School Choice:

Vocational 0.0146*** 0.0143*** 0.0171***
(0.00172) (0.00163) (0.00169)

Academic non-STEM 0.0162*** 0.0160*** 0.0165***
(0.00163) (0.00161) (0.00166)

Academic STEM 0.00660*** 0.00693*** 0.0135***
(0.00149) (0.00136) (0.00145)

College Application Choice:

Business (short) 0.00418*** 0.00418*** 0.00411***
(0.000771) (0.000771) (0.000770)

STEM (short) 0.0194*** 0.0194*** 0.0194***
(0.00142) (0.00142) (0.00143)

Health Sciences 0.00561*** 0.00559*** 0.00548***
(0.00126) (0.00126) (0.00126)

Education 0.00724*** 0.00722*** 0.00709***
(0.00113) (0.00113) (0.00114)

Humanities 0.00313*** 0.00308*** 0.00290***
(0.000624) (0.000622) (0.000621)

Social Sciences 0.00319*** 0.00317*** 0.00315***
(0.000806) (0.000806) (0.000807)

Business 0.00592*** 0.00578*** 0.00568***
(0.00126) (0.00125) (0.00126)

Law 0.00294*** 0.00285*** 0.00275***
(0.000632) (0.000631) (0.000637)

Science and Comp.Sci 0.0112*** 0.0110*** 0.0110***
(0.00111) (0.00111) (0.00111)

Engineering 0.0124*** 0.0118*** 0.0120***
(0.00178) (0.00177) (0.00181)

Medicine 0.00272*** 0.00270*** 0.00272***
(0.000747) (0.000744) (0.000750)

School and Cohort FE x x x
School-Specific Time Trend x x x
Own Skills x x
Avg. Skills of Classmates x

Notes: Standard errors in parentheses. Each entry in the table represents a separate estimation of a linear

probability model for making the choice listed in the first column (Dij = kj) on the fraction of classmates

making the same choice (P
kj
−icp). High School models are with respect to classmates in 9th grade. College

choice models are with respect to classmates in the same track in the same high school. Skills in 9th grade

is measured using 9th grade GPA. Skills in High School is measured using skills as measured by the military

enlistment measures on cognitive and leadership abilities. All specifications additionally include the following

controls: mother’s education, father’s education, family income, parents married, healthy at birth, mother’s age

at birth, cohort dummies. Also included are 9th grade school average rates of advanced english and math. *
p < 0.05, ** p < 0.01, *** p < 0.001
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C.2 College Admissions Cutoffs
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Figure C.1: Share of 4-year engineering applications by geographic area (North and South)

Notes: This figure shows the proportion of applications sent to each specific school for two specific geographic clusters (cluster 5 and 2) corresponding
to the North and South of Sweden.
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Figure C.2: Regression discontinuity plots for admission based on GPA cutoff
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Notes: These RD plot follow Kirkebøen et al. (2016) and plots the first stage RD impact on admission
using the GPA admissions threshold discontinuity.
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Table C.2: RD regression for admission probability

Admitted

GPA > threshold 0.757∗∗∗

(0.006)
Swe SAT > threshold 0.705∗∗∗

(0.009)
GPA & Swe SAT > threshold −0.635∗∗∗

(0.010)
poly(GPA, 3)1 −1.716∗∗

(0.678)
poly(GPA, 3)2 7.075∗∗∗

(0.574)
poly(GPA, 3)3 −4.365∗∗∗

(0.629)
poly(Swe Sat, 3)1 3.813∗∗

(1.941)
poly(Swe Sat, 3)2 3.373∗∗∗

(1.163)
poly(Swe Sat, 3)3 −0.844

(0.794)
No Swe Sat Score 0.050∗∗∗

(0.017)
HS Academic Non-STEM Track 0.017∗∗

(0.007)
HS Academic STEM Track −0.021∗∗∗

(0.007)
HS Track missing 0.027∗∗

(0.011)
Constant 0.132∗∗∗

(0.009)

Observations 19,993
R2 0.635
Adjusted R2 0.635

Notes: This table shows the logistic regression of admission on the indicator for being above the GPA
cutoff for the program, being above the test scores (Swe SAT) cutoff for the program, and being above
both cutoffs. The regression additionally controls for a cubic in GPA, a cubic in Swe SAT, an indicator
for having a Swe SAT score (since it is not required), and high school track indicators. Polynomials use
orthogonal polynomials. This is a stacked regression for all applicants and applications which were
considered by the Swedish admissions system. The threshold indicators correspond to the specific
program (school-by-field of study pair) for which the student applied. Table reports the coefficients
from the logistic regression.
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D Estimation Strategy and Model Fit

D.1 Model

D.1.1 Treatment effects in General Model

Furthermore, assume that in each period there is an observed outcome Yt, such as

earnings, that is given by:

E[Yt] =

∫ ∫ ∫
Yt(Xt, ξ,ηt)dFηt(ηt)dFXt(Xt|ξ)dFξ(ξ), (D.1)

where Yt(Xt, ξ) is the hedonic portion of earnings and ηt is a mean-zero idiosyncratic

shock. The observable state variables Xt may include prior decisions or functions of prior

decisions, such as experience. For simplicity, we assume that the idiosyncratic shock ηt is

independent of prior and future shocks, though it is possible to allow for serial correlation

in this setup. Researchers or policy makers may then wish to understand how expected

earnings for an individual would change if we had fixed a given decision in time period

t− τ . In other words,

E[Yt(Dt−τ = 1)]− E[Yt(Dt−τ = 0)]

where

E[Yt(Dt−τ = 1)] =

∫ ∫ ∫
Yt(Xt, ξ,ηt)dFη(ηt)dFXt(Xt(Dt−τ = 1)|ξ)dFξ(ξ)

and

E[Yt(Dt−τ = 0)] =

∫ ∫ ∫
Yt(Xt, ξ,ηt)dFη(ηt)dFXt(Xt(Dt−τ = 0)|ξ)dFξ(ξ).

Above, Yt(Dt−τ = k) represents the potential outcome Yt if choice Dt−τ is exogenously set

to choice k, but students are then allowed to make endogenous decisions moving forward.

Similarly, Xt(Dt−τ = k) represents the state variables at time t when exogenously fixing

choice Dt−τ to k.

D.1.2 Empirical Model of Applications

In order to make the model tractable, we assume that individuals in a geographic

× GPA × high school track bin (gi) have the same preferences over alternatives within

a nest. In other words, we specify δil ≡ δl(gi) the utility of a major-choice pair within

a nest. Furthermore, an individual’s GPAi may be below the admissions threshold of
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certain programs in the consideration set. We denote the restricted consideration set of

an individual as Bik ≡ Bk(GPAi).

Let Bik3 denote the set of major-college pairs in nest k3 ∈ K3 considered by student

i. The choice probability of ranking major-college pair l highest can then be decomposed

into marginal and conditional probabilities.

P
[
D1
i = l

]
= P

[
D1
i = l|D1

i ∈ Bik

]
P
[
D1
i ∈ Bik

]
, (D.2)

where P [D1
i = l|D1

i ∈ Bik] is the conditional probability of ranking major-college pair

l first conditional on choosing a major-college pair in nest Bik and P [D1
i ∈ Bik] is the

probability of ranking first a major-college pair in nest Bik. These choice probabilities

are

P
[
D1
i ∈ Bik

]
=

efk(X,Z,θ,υ)+λkHik∑K
j=1 e

fj(X,Z,θ,υ)+λjHij
(D.3)

P
[
D1
i = l|D1

i ∈ Bik

]
=


eδil/λk∑

j∈Bik
eδij/λk

if l ∈ Li

0 otherwise
(D.4)

where Hik = ln
∑

j∈Bik e
δij/λk is the scaled expected utility of nest k and λk ∈ (0, 1] is a

parameter that describes the amount of correlation between εil within nest k. If λk = 1,

then the errors are uncorrelated, and if λk = 0 the errors are perfectly correlated.

The restricted expected utility for nest k, Hk(gi, GPAi), for a student in geographic-

gpa-track bin gi with GPAi can be expressed in terms of the unrestricted expected utility.

The expected utility for an individual with GPAi in geographic-GPA bin gi is

Hk(gi, GPAi) = ln
∑

j∈Bk(GPAi)

eδj(gi)/λk

= ln

[(∑
j∈Bk

eδj(gi)/λk

)∑
j∈Bk(GPAi)

eδj(gi)/λk∑
j∈Bk e

δj(gi)/λk

]

= ln

[(∑
j∈Bk

eδj(gi)/λk

)(
P
[
D1
i ∈ Bk(GPAi)|D1

i ∈ Bk, gi
])]

= Hk(gi) + ln
(
P
[
D1
i ∈ Bk(GPAi)|D1

i ∈ Bk, gi
])
.

In order to estimate P
[
Dj
i ∈ Bik

]
for j > 1, we need to remove the previously chosen

major-college alternative from the choice set for lower rankings. In other words, Hik

will depending on the ranked choice considered. In an exploded logit model, the choice

probability for rank r is the choice probability removing the higher ranked choices. Con-
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sider the choice probability of the second-ranked choice, where the first-ranked choice is

l′ in nest k′. First, we adjust Hk(gi, GPAi) to remove the first ranked choice. Define

H2
k(gi, GPAi) for the second choice as

H2
k(gi, GPAi) =

{
Hk(gi, GPAi) if k 6= k′

Hk(gi, GPAi) + ln (1− P [D1
i = l′|D1

i ∈ Bk′(GPAi), gi]) if k = k′
(D.5)

The probability of choosing nest k as a second choice is then

P
[
D2
i ∈ Bk|gi, GPAi, D1

i = l′
]

=
efk(X,Z,θ,υ)+λkH

2
k(gi,GPAi)∑K

j=1 e
fj(X,Z,θ,υ)+λjH2

j (gi,GPAi)
. (D.6)

In other words, the latent utility of each nest needs to be adjusted by

λk ln (1− P
[
D1
i = l′|D1

i ∈ Bk(GPAi), gi
]
) (D.7)

as major-college pair l′ has already been chosen. Given our assumptions, the share of pro-

gram l′ in nest Bk (P [D1 = l′|D1 ∈ Bk(GPA), g]) can be non-parametrically estimated

directly from the data for each bin g and with knowledge of the GPA threshold for

program l′.

D.2 Estimation Strategy

We estimate the model in two stages using maximum likelihood. The measurement

system is estimated in a first stage and is shared for all models estimated in this paper.

Economic models D and Y (i.e. education choices and earnings) are estimated in the

second stage using estimates from the first stage. The distribution of the latent factors is

estimated using only measurements. We do not include economic models in the estimation

of the measurement system as doing so could produce tautologically strong predictions

from the estimated factors.

Assuming independence across individuals (denoted by i), the likelihood is:

L =
∏
i

f(Yi,Di,Mi|Xi)

=
∏
i

∫ ∑
υ

f(Yi,Di|Xi,υ,θ)f(Mi|Xi,θ)f(υ|θ)f(θ)dθ,

where f(·) denotes a probability density function.
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For the first stage, the sample likelihood is

L1 =
∏
i

∫
θ∈Θ

f(Mi|θ = θ)fθ(θ) dθ

=
∏
i

∫
θ∈Θ

[
K∏
k

f(Mi,k|θ = θ;γMk
)

]
fθ(θ;γθ) dθ

where we numerically integrate over the distributions of the latent factors. The goal of

the first stage is to secure estimates of γM and γθ, where γMk
and γθ are the parameters

for the measurement models and the factor distribution, respectively. We assume that

the idiosyncratic shocks are mean zero and normally distributed.

We can estimate economic models, where we correct for measurement error and biases

in the proxies by integrating over the estimated measurement system of the latent factors.

The estimated measurement system, f(Mi|θ = θ; γ̂M)fθ(θ; γ̂θ), can be thought of as the

individual-specific probability distribution function of latent skills. The likelihood for

economic models is then

L2 =
∏
i

∫
θ∈Θ

∑
υ

pυ(υ = υ|θ = θ;γυ)f(Yi,Di|Xi,υ,θ = θ;γY ,γD) (D.8)

× f(Mi|Xi,θ = θ; γ̂M)fθ(θ; γ̂θ) dθ,

where the goal of the second stage is to maximize L2 and obtain estimates γ̂υ, γ̂Y and

γ̂D. Since the economic models (Y ,D) are independent from the first stage models

conditional on X,θ and we impose no cross-equation restrictions, we obtain consistent

estimates of the parameters for economic models.

D.3 Model fit

This section provides tables comparing the fit of the model to the data for the various

educational decisions.

Table D.1: Probability of taking advanced english in 9th grade

9th Grade Adv Eng Sim Data
No 0.3524 0.3578
Yes 0.6476 0.6422

Notes: This table reports the share of students taking advanced english in 9th grade in the simulation
and data.
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Table D.2: Probability of taking advanced math in 9th grade

9th Grade Adv Math Sim Data
No 0.4093 0.4145
Yes 0.5907 0.5855

Notes: This table reports the share of students taking advanced math in 9th grade in the simulation
and data.

Table D.3: Probability of HS Tracks

HS Track Sim Data
High School Dropout 0.0877 0.0877
Vocational 0.5177 0.5146
Academic Non-STEM 0.1842 0.1813
Academic STEM 0.2104 0.2165

Notes: This table reports the share of students in each high school track in the simulation and the
data.

Table D.4: Probability of Applying to college

Apply Coll Sim Data
No 0.5270 0.5294
Yes 0.4730 0.4706

Notes: This table reports the share of students applying to college in the simulation and data.

Table D.5: Prob of applying to college conditional on High School track

High School Track Sim Data
Vocational 0.2180 0.2086
Academic Non-STEM 0.7089 0.7101
Academic STEM 0.8938 0.8929

Notes: This table reports the share of students applying to college conditional on high school track
in the simulation and the data.
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Table D.6: Prob of enrollment conditional on major of first application

Majors Sim Data
Non-STEM (short) 0.3921 0.6186
STEM (short) 0.9041 0.9278
Business (short) 0.3618 0.5969
Health Sciences 0.4431 0.7965
Education 0.8593 0.8438
Humanities 0.3418 0.6818
Social Sciences 0.3692 0.5770
Business 0.5259 0.6906
Law 0.1231 0.5759
Science and Comp-Sci 0.5861 0.7082
Engineering 0.8271 0.7517
Medicine 0.1143 0.5258

Notes: This table reports the probability of enrolling in a particular major conditional on hte first
application being to that major in the simulation and data.

Table D.7: Comparing Prob of graduating in a given major conditional on enrolling in
the major (data vs simulation)

EnrollMajor Simulation Data
Non-STEM (short) 0.3897 0.3749
Business (short) 0.2715 0.1684
STEM (short) 0.4209 0.4093
Health Sciences 0.7358 0.7025
Education 0.5564 0.5556
Humanities 0.2770 0.3245
Social Sciences 0.3789 0.3119
Science and Comp-Sci 0.3789 0.3662
Business 0.4334 0.4077
Law 0.6692 0.6111
Engineering 0.6019 0.6342
Medicine 0.7915 0.8497

Notes: This table reports the probability of graduating in a given major conditional on enrolling in
the simulation and data.
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Table D.8: Probability of final education (data vs simulation)

Final Education Level Sim Data Diff Prop Diff
Business 0.0177 0.0185 -0.0008 -0.0432
Business (short) 0.0038 0.0045 -0.0007 -0.1500
CollDO high 0.0731 0.0629 0.0102 0.1625
CollDO low 0.0606 0.0641 -0.0035 -0.0554
Education 0.0293 0.0226 0.0067 0.2948
Engineering 0.0605 0.0572 0.0034 0.0590
HS Academic Non-STEM 0.0842 0.0841 0.0001 0.0014
HS Dropout 0.0877 0.0877 -0.0000 -0.0003
HS Academic STEM 0.0344 0.0399 -0.0055 -0.1377
HS Vocational 0.4301 0.4348 -0.0047 -0.0108
Health Sciences 0.0124 0.0143 -0.0019 -0.1321
Humanities 0.0027 0.0049 -0.0022 -0.4535
Law 0.0082 0.0071 0.0011 0.1624
Medicine 0.0049 0.0059 -0.0010 -0.1754
Non-STEM (short) 0.0119 0.0148 -0.0029 -0.1978
STEM (short) 0.0515 0.0516 -0.0001 -0.0012
Science and Comp-Sci 0.0187 0.0166 0.0021 0.1277
Social Sciences 0.0084 0.0087 -0.0003 -0.0323

Notes: This table reports the share of students in each final education level in the simulation and
data. The ‘Diff” column reports the difference between the simulation and data while “Prop Diff”
reports the proportinal difference.
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D.4 Role of Types in the Model

This section provides details on how students sort based on their latent types. Figure

D.1 shows the share of each type in each of our four terminal high school tracks. Figure

D.2 shows the fraction of enrollees (top panel) and graduates (bottom panel) that are

each type in each of the long majors.

Figure D.1: Sorting of Types into High School Tracks
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Notes: This figure shows the fraction of high school students that are of each type.
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Figure D.2: Sorting of Types into College Majors
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Notes: These figures show the fraction of enrollees (top) and graduates (bottom) that are of each
type.
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E Additional Results

Figure E.1: Treatment Effects of HS Track on Log Wages within Final Education Level
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Notes: Figure shows the gains from changing high school track conditional on final educational attain-
ment for each of the three high school track margins. Error bars show bootstrapped 95% confidence
intervals.
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Figure E.2: Returns to Skills across Majors (λ̂sm) for Present Value of Disposable Income
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Notes: These figures are comparing the returns to skill (λ̂sm) for four-year graduates from equation
(3). The first (red) bar shows the loading on cognitive skill, the second (blue) bar shows the loading on
grit skill, and the third (green) bar shows the loading on interpersonal skill. This figure shows estimates
for log present discounted value of disposable income while Figure 3 shows estimates for log wages.
Each sub-panel shows the estimates for different four-year majors. Error bars show bootstrapped 95%
confidence intervals.

Figure E.3: Treatment Effects: Log Present Value Disposable Income

Academic STEM vs Academic Non−STEM Academic STEM vs Vocational Academic Non−STEM vs Vocational

AM
TE

ATE
ATE (low)

ATE (high)

TUT
TT AM

TE

ATE
ATE (low)

ATE (high)

TUT
TT AM

TE

ATE
ATE (low)

ATE (high)

TUT
TT

−0.1

0.0

0.1

0.2

C
ha

ng
e 

in
 L

og
 W

ag
e

Notes: This figure shows the estimated treatment effects for the three high school track margins on log
present value of disposable income, while Figure 4 shows the treatment effects for log wages, college
enrollment, and college graduation. The treatment effects are estimated for everyone who has at least
a high school degree. High skilled is defined as being in the top half of all three skills distributions,
while low skilled is defined as being in the bottom half of all three skills distributions. Error bars
show bootstrapped 95% confidence intervals.

48



Table E.1: Fraction Ranking each Major First and Second in Expected Earnings

PV Disposable Income

1st 2nd

Engineering 0.30 0.20
Business 0.27 0.15
Law 0.16 0.22
Medicine 0.13 0.15
STEM (short) 0.10 0.15
Business (short) 0.03 0.04
Social Sciences 0.01 0.07
Science and Comp-Sci 0.00 0.02
Education 0.00 0.01

Notes: The table reports the proportion of individuals who applied to college ranking a major first
or second in terms of expected log present discounted value of disposable income. All majors which
have a value of 0.01 or higher in any column are reported. A sample of one million synthetic workers
are created by drawing a vector of observables from the data, drawing a vector of latent skills from
the estimated factor distribution, and drawing a latent type from the type probability distribution.
The expected log PV disposable income are calculated for each synthetic worker using estimates of
equation (3) (E[Ysm|X,θ,υ] = βYsmX + λYsmθ +αYsmυ).
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Table E.2: AMTE of inducing marginal students into the STEM track by pre- and post-intervention final education
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HS Dropout 0.24 0.16 0.13 0.29 0.10 0.11 0.10 0.28 0.31
HS Vocational 0.08 0.08 0.17 0.09 0.13 0.18 0.13 0.01 0.18 0.35 0.31 0.19 0.37 0.37
HS Academic Non-STEM 0.06 0.05 0.08 0.09 0.19 -0.00 -0.09 0.07 0.14 0.07 0.04 0.31
College Dropout (short) 0.03 -0.01 0.15 0.02 0.07 0.20
College Dropout (long) 0.27 0.05 0.04 0.12 -0.14 -0.08 0.12 0.04 0.24
Non-STEM (short) 0.05 0.07 0.06 0.20 0.07 0.25
Business (short) -0.03
STEM (short) -0.05 -0.07 0.05 0.09
Health Sciences -0.03 0.04 0.15 0.06 -0.06 0.16 0.44 0.47
Education 0.15 0.12 0.17 0.03 0.26 0.49
Humanities 0.14 -0.02
Social Sciences 0.01 -0.01 -0.16 -0.02 0.27
Business -0.27 -0.12 -0.09 0.02 -0.15 -0.08
Law -0.20 0.07 -0.04 0.03
Science and Comp-Sci -0.04 0.06 0.03 0.02 0.15
Engineering -0.14 -0.03 0.09
Medicine -0.21 0.13 0.05

Notes: Table shows the average marginal treatment effect of the high school STEM track for those near the margin of choosing STEM by pre- and
post-intervention final education levels. The rows are baseline final education choices prior to the intervention and the column are counterfactual final
education attainment after eliminating the vocational track. Omitted cells are for transitions with probabilities of less than 0.000025 based on the
simulations.
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Table E.3: AMTE of encouraging STEM applications for college by pre- and post- intervention final education
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HS Vocational -0.01 0.03 0.08 0.10 -0.02
HS Academic Non-STEM -0.00 0.02 -0.02 -0.01 -0.10 -0.23 0.16 0.06 0.08 0.14
HS Academic STEM -0.03 0.03 0.02 -0.07 0.19
College Dropout (short) -0.01 0.05 -0.01 -0.16 0.11 0.01 -0.07 0.02 0.17 0.07 0.20 0.43
College Dropout (long) -0.02 -0.02 0.01 0.01 0.01 0.08 0.02 -0.11 0.00 -0.00 0.20 0.12 0.05 0.22 0.22
Non-STEM (short) -0.17 -0.02 0.02 -0.07 0.12 -0.08 -0.15 0.05 0.34 0.01 0.20
Business (short) -0.02 -0.15 -0.07 -0.06 -0.22 -0.02 -0.07 0.05
STEM (short) -0.27 -0.17 -0.11 -0.12 -0.09 -0.13 -0.27 -0.17 0.08 -0.01 0.10
Health Sciences -0.15 -0.03 0.01 0.05 0.19 0.13 -0.07 0.20 0.39 0.35
Education -0.02 0.09 0.06 0.13 0.12 0.15 0.14 0.10 0.15 0.48 0.36 0.27 0.49 0.50
Humanities 0.04 0.07 0.17 -0.01 0.12 0.36
Social Sciences -0.11 -0.08 -0.03 0.01 -0.19 0.07 -0.11 -0.11 0.10 0.02 0.25 0.20
Business -0.13 -0.18 -0.15 -0.15 0.05 -0.13 -0.37 -0.54 -0.13 -0.04 -0.15 -0.02 -0.10
Law -0.16 -0.22 -0.28 -0.12 -0.30 -0.45 -0.15 -0.01 -0.20 -0.01 -0.05
Science and Comp-Sci -0.08 -0.05 0.00 0.05 -0.19 -0.19 0.17 0.21
Engineering -0.16 -0.19 -0.15 -0.07 -0.39 -0.50 -0.34 0.09 -0.16 0.01
Medicine -0.31 -0.23 -0.36 0.04

Notes: Table shows the average marginal treatment effects of encouraging applications to STEM majors for those induced to change their final education
level, by pre- and post-intervention final education levels. The rows are baseline final education choices prior to the intervention and the column are
counterfactual final education attainment after encouraging STEM applications. Omitted cells are for transitions with probabilities of less than 0.000025
based on the simulations.
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F Model Parameter Estimates
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Table F.1: Estimates for Type Probability Model

Variable Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8
β StdEr. β StdEr. β StdEr. β StdEr. β StdEr. β StdEr. β StdEr.

Intercept -0.467 0.251 -1.010 0.114 -0.688 0.067 -0.477 0.049 0.089 0.112 -1.088 0.083 -0.116 0.077
Cognitive -0.209 0.051 0.193 0.030 -0.096 0.026 0.320 0.024 0.113 0.038 -0.051 0.034 0.225 0.030
Interpersonal 0.011 0.038 0.054 0.026 -0.005 0.027 -0.113 0.021 -0.146 0.028 -0.229 0.033 -0.058 0.022
Grit -0.193 0.059 0.179 0.040 0.034 0.031 0.283 0.030 0.017 0.045 0.024 0.047 0.139 0.030
N 105913 105913 105913 105913 105913 105913 105913

Notes: Table reports estimates for the type probability model.
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Table F.2: Estimates for Primary Grades Models (Measurement System Mms)

Variable Ninth Grade English Grade Ninth Grade Math Grade Ninth Grade Sports Grade Ninth Grade Swedish Grade Ninth Grade GPA
β StdEr. β StdEr. β StdEr. β StdEr. β StdEr.

Intercept -0.827 0.040 -0.567 0.045 -0.548 0.032 -0.978 0.037 -0.729 0.034
Mother College 0.217 0.010 0.270 0.012 0.056 0.009 0.276 0.010 0.238 0.009
Mother High School 0.123 0.010 0.142 0.010 0.041 0.009 0.165 0.009 0.104 0.008
Mother Educ missing 0.148 0.023 0.256 0.026 0.070 0.019 0.274 0.022 0.193 0.019
Father College 0.309 0.012 0.315 0.014 0.062 0.010 0.326 0.012 0.271 0.011
Father High School 0.138 0.009 0.147 0.010 0.054 0.008 0.145 0.008 0.121 0.007
Father Educ missing 0.180 0.019 0.107 0.021 0.035 0.017 0.099 0.019 0.104 0.016
Family Income 0.097 0.005 0.148 0.006 0.130 0.004 0.121 0.005 0.131 0.005
School-Ave Fam Income 0.201 0.014 0.106 0.016 0.022 0.011 0.091 0.013 0.025 0.012
Health Endurance -0.002 0.004 0.019 0.004 0.208 0.003 -0.008 0.004 0.025 0.003
Health Strength -0.066 0.003 -0.096 0.003 -0.191 0.002 -0.088 0.003 -0.093 0.002
Health missing -0.047 0.018 -0.074 0.020 -0.052 0.015 -0.037 0.017 -0.035 0.015
9th Math Grade 0.007 0.003
9th English Grade 0.020 0.002
9th Sports Grade 0.065 0.002
9th Sports missing -0.192 0.029
9th Swedish Grade 0.165 0.003
9th Swedish Missing -0.053 0.033
Took 9th Adv. Math -0.880 0.006
Took 9th Adv. English -0.547 0.007
Cognitive 0.482 0.005 0.586 0.005 0.012 0.004 0.430 0.005 0.376 0.004
Interpersonal 0.029 0.004 0.063 0.005 0.287 0.004 0.096 0.004 0.112 0.004
Grit 0.498 0.005 0.607 0.005 0.397 0.004 0.518 0.004 0.552 0.003
1/Precision 0.720 0.002 0.615 0.003 0.772 0.002 0.610 0.003 0.285 0.001
N 105913 105913 105612 105725 105913

Notes: Table reports estimates for the primary grades models.

54



Table F.3: Estimates for Secondary Grade Models (Measurement System Mms)

Variable Tenth Sports Grade Tenth Math Grade HS GPA (Vocational) HS GPA (Academic)
β StdEr. β StdEr. β StdEr. β StdEr.

Intercept -0.871 0.034 -1.197 0.044 262.544 2.577 206.876 2.697
Mother College 0.063 0.009 0.257 0.011 10.081 0.635 16.399 0.599
Mother High School 0.039 0.009 0.118 0.011 4.577 0.527 6.157 0.718
Mother Educ missing 0.056 0.021 0.240 0.026 8.463 1.306 12.617 1.560
Father College 0.089 0.010 0.311 0.014 12.273 0.771 20.563 0.780
Father High School 0.056 0.008 0.113 0.011 4.739 0.516 7.922 0.628
Father Educ missing 0.053 0.019 0.073 0.021 3.765 1.058 8.645 1.315
Family Income 0.131 0.004 0.131 0.005 4.721 0.327 7.223 0.309
School-Ave Fam Income 0.117 0.013 0.161 0.015 9.245 0.919 15.405 0.880
Health Endurance 0.203 0.003 0.004 0.004 0.624 0.210 -0.404 0.250
Health Strength -0.213 0.003 -0.094 0.003 -3.170 0.158 -4.557 0.207
Health missing -0.112 0.017 -0.112 0.020 -2.904 1.015 -2.867 1.167
10th Math Grade 21.916 0.261 29.817 0.254
10th Math Missing 0.860 0.339 -25.822 3.974
10th Sports Grade 19.078 0.229 5.763 0.235
10th Sports Missing -36.180 1.899 4.082 3.885
Took 9th Adv. Math 0.605 0.008 5.572 0.432 -6.692 0.814
Took 9th Adv. English 13.528 0.377 11.921 0.794
HS Academic Track 0.070 0.009 -0.990 0.009
HS STEM Track -0.170 0.009 -1.079 0.010 -8.857 0.375
Cognitive 0.014 0.004 0.536 0.005 23.119 0.282 23.600 0.362
Interpersonal 0.335 0.004 0.035 0.004 3.432 0.248 5.847 0.267
Grit 0.329 0.005 0.458 0.005 20.753 0.322 29.874 0.336
1/Precision 0.804 0.003 0.711 0.002 36.504 0.177 31.739 0.152
N 95424 72853 54498 42124

Notes: Table reports estimates for the secondary grades models.
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Table F.4: Estimates for Military Enlistment Cognitive Measure Models (Measurement System Mms)

Variable Cognitive measure 1 Cognitive measure 2 Cognitive measure 3 Cognitive measure 4
β StdEr. β StdEr. β StdEr. β StdEr.

Intercept -1.009 0.030 -1.135 0.030 -1.121 0.034 -0.879 0.035
Mother College 0.129 0.008 0.194 0.007 0.152 0.008 0.169 0.009
Mother High School 0.107 0.007 0.118 0.007 0.109 0.008 0.144 0.008
Mother Educ missing 0.141 0.016 0.165 0.016 0.089 0.018 0.183 0.019
Father College 0.131 0.009 0.205 0.009 0.121 0.010 0.119 0.010
Father High School 0.061 0.007 0.087 0.007 0.093 0.007 0.088 0.008
Father Educ missing 0.037 0.015 0.068 0.014 0.119 0.016 0.034 0.017
Family Income 0.038 0.004 0.001 0.004 0.023 0.004 0.031 0.004
School-Ave Fam Income 0.069 0.011 0.120 0.010 0.171 0.011 0.101 0.012
Health Endurance 0.014 0.003 0.006 0.003 0.045 0.003 0.098 0.003
Health Strength -0.036 0.002 -0.016 0.002 -0.045 0.002 -0.051 0.002
Health missing -0.132 0.014 -0.074 0.014 -0.066 0.016 -0.053 0.015
Took 9th Adv. Math 0.397 0.006 0.164 0.007 0.367 0.007 0.273 0.008
Took 9th Adv. English 0.345 0.006 0.505 0.006 0.039 0.007 0.082 0.007
HS Vocational Track 0.079 0.008 0.058 0.009 0.065 0.010 0.083 0.010
HS Academic Track 0.123 0.010 0.292 0.011 -0.139 0.014 -0.183 0.013
HS STEM Track 0.348 0.012 0.304 0.012 0.298 0.014 0.438 0.013
Cognitive 0.536 0.003 0.474 0.003 0.517 0.003 0.547 0.003
1/Precision 0.516 0.002 0.610 0.002 0.707 0.002 0.657 0.002
N 100254 100564 100564 90592

Notes: Table reports estimates for the military enlistment cognitive models.
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Table F.5: Estimates for Military Enlistment Socio-emotional Measure Models (Measurement System Mms)

Variable Lead missing Emotional Stability Leadership
β StdEr. β StdEr. β StdEr.

Intercept 1.894 0.072 -1.418 0.045 1.954 0.078
Mother College -0.221 0.018 0.067 0.012 0.161 0.022
Mother High School -0.249 0.016 0.103 0.010 0.194 0.019
Mother Educ missing -0.289 0.040 0.185 0.024 0.330 0.046
Father College -0.177 0.021 0.075 0.013 0.179 0.024
Father High School -0.165 0.016 0.043 0.010 0.108 0.018
Father Educ missing -0.078 0.034 -0.051 0.021 -0.025 0.039
Family Income -0.060 0.009 0.131 0.006 0.243 0.011
School-Ave Fam Income -0.256 0.024 0.176 0.016 0.362 0.028
Health Endurance -0.091 0.007 0.268 0.004 0.399 0.007
Health Strength 0.100 0.005 -0.155 0.003 -0.225 0.006
Health missing 0.827 0.032 -0.234 0.023 -0.431 0.041
Took 9th Adv. Math -0.643 0.015 0.089 0.010 0.189 0.019
Took 9th Adv. English -0.477 0.015 0.044 0.009 0.155 0.017
HS Vocational Track -0.145 0.023 0.282 0.012 0.467 0.025
HS Academic Track 0.009 0.029 0.349 0.017 0.620 0.033
HS STEM Track 0.037 0.031 0.351 0.020 0.615 0.036
Cognitive -1.092 0.012 0.266 0.005 0.580 0.009
Interpersonal 0.759 0.002 1.237 0.004
1/Precision 0.347 0.002 0.540 0.003
N 105913 100975 58465

Notes: Table reports estimates for the military enlistment socio-emotional measures models.
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Table F.6: Estimates for Ninth and High School Choice Models (Education Choices D1, D2)

Variable Ninth Adv. Math Ninth Adv. English HS Voc. Track HS Acad. Track HS STEM Track
β StdEr. β StdEr. β StdEr. β StdEr. β StdEr.

Intercept -0.945 0.104 -0.911 0.098 -3.141 0.278 -6.933 0.265 -12.169 0.350
Mother College 0.606 0.018 0.492 0.017 0.420 0.049 1.060 0.057 1.404 0.062
Mother High School 0.297 0.017 0.254 0.015 0.440 0.034 0.747 0.045 1.080 0.053
Mother Educ missing 0.511 0.039 0.348 0.034 0.584 0.075 1.056 0.106 1.573 0.113
Father College 0.620 0.020 0.632 0.019 0.461 0.055 1.379 0.066 1.680 0.072
Father High School 0.384 0.015 0.335 0.014 0.373 0.033 0.808 0.045 1.237 0.051
Father Educ missing 0.302 0.034 0.369 0.029 0.109 0.064 0.717 0.088 0.913 0.100
Family Income 0.369 0.009 0.243 0.008 0.347 0.027 0.876 0.032 1.043 0.035
School-Ave Fam Income -0.487 0.030 -0.176 0.027 0.930 0.069 0.732 0.081 0.912 0.088
Health Endurance 0.033 0.006 0.004 0.006 0.121 0.013 -0.000 0.018 0.133 0.019
Health Strength -0.175 0.005 -0.139 0.005 -0.236 0.011 -0.470 0.016 -0.617 0.018
Health missing -0.200 0.032 -0.124 0.028 -0.130 0.060 -0.396 0.078 -0.442 0.092
9th GPA Bin2 -0.541 0.059 0.058 0.066 -0.140 0.073
9th GPA Bin3 -1.382 0.083 -0.655 0.094 -0.776 0.103
9th GPA Bin4 -2.529 0.106 -2.013 0.120 -1.935 0.131
Took 9th Adv. Math -0.158 0.053 0.757 0.063 2.822 0.094
Took 9th Adv. English -0.096 0.047 1.296 0.064 1.164 0.073
School-Ave Adv. Math 3.201 0.075
Adv. Math IV 0.201 0.006
School-Ave Adv. English 2.551 0.065
Adv. English IV 0.183 0.006
School-Ave Vocational Track 3.440 0.133 0.000 0.000 0.000 0.000
Vocational Track IV 0.076 0.009 0.000 0.000 0.000 0.000
School-Ave Academic Track 0.000 0.000 4.013 0.226 0.000 0.000
Academic Track IV 0.000 0.000 0.103 0.011 0.000 0.000
School-Ave STEM Track 0.000 0.000 0.000 0.000 2.751 0.300
STEM Track IV 0.000 0.000 0.000 0.000 0.060 0.012
Cognitive 0.669 0.012 0.532 0.011 0.613 0.025 1.371 0.035 1.998 0.041
Interpersonal 0.206 0.007 0.135 0.006 0.267 0.019 0.499 0.023 0.697 0.027
Grit 0.979 0.012 0.733 0.011 1.144 0.033 2.102 0.049 2.809 0.054
Type 2 -1.590 0.137 -1.506 0.166 -0.502 0.304 -1.063 0.288 -0.474 0.334
Type 3 -0.730 0.113 -0.741 0.113 -1.762 0.318 -1.047 0.293 -1.931 0.416
Type 4 -1.054 0.112 -0.862 0.112 -0.059 0.223 0.090 0.227 0.366 0.279
Type 5 -0.609 0.084 -0.826 0.085 2.376 0.462 1.609 0.478 4.183 0.518
Type 6 -1.426 0.201 -1.541 0.192 0.796 0.336 0.511 0.368 1.990 0.435
Type 7 -0.976 0.089 -0.854 0.089 -0.208 0.610 0.254 0.624 0.160 0.722
Type 8 -0.540 0.122 -0.801 0.117 0.803 0.293 -0.811 0.297 2.350 0.353
N 105913 105913 105913 105913 105913

Notes:
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Table F.7: Estimates for Apply to College, SweSAT and Enroll Models (Education Choices D3a, D3b, D3d)

Variable Apply College Take SweSAT Total SweSAT Score Enroll after Admission
β StdEr. β StdEr. β StdEr. β StdEr.

Intercept -2.094 0.097 -0.333 0.088 0.100 0.023 0.180 0.103
Mother College 0.315 0.016 0.101 0.018 0.126 0.004 0.147 0.023
Mother High School 0.176 0.015 0.063 0.023 0.070 0.005 0.096 0.029
Mother Educ missing 0.222 0.032 0.068 0.048 0.087 0.011 0.162 0.064
Father College 0.345 0.017 0.143 0.019 0.137 0.004 0.183 0.024
Father High School 0.181 0.014 -0.026 0.020 0.056 0.005 0.074 0.026
Father Educ missing 0.191 0.029 0.062 0.042 0.075 0.010 0.042 0.057
Family Income 0.091 0.008 0.040 0.009 0.006 0.002 0.038 0.012
School-Ave Fam Income 0.003 0.019 0.144 0.026 0.084 0.006 0.048 0.032
Health Endurance -0.056 0.005 0.004 0.007 -0.014 0.002 -0.016 0.009
Health Strength -0.067 0.004 -0.013 0.006 -0.004 0.002 -0.044 0.009
Health missing -0.175 0.025 -0.013 0.035 0.028 0.009 -0.037 0.048
Took 9th Adv. Math 0.186 0.026 0.089 0.024 0.075 0.006 0.037 0.034
Took 9th Adv. English 0.194 0.021 0.275 0.024 0.207 0.007 0.021 0.033
HS GPA Bin2 0.365 0.015 -0.021 0.023
HS GPA Bin3 0.537 0.020 -0.153 0.025
HS GPA Bin4 0.690 0.024 -0.531 0.032
HS Academic Track 0.829 0.020 0.659 0.027 -0.069 0.006 -0.078 0.029
HS STEM Track 1.408 0.030 0.635 0.029 -0.025 0.006 0.187 0.036
Cognitive 0.231 0.010 0.141 0.011 0.271 0.002 0.210 0.011
Interpersonal 0.036 0.006 0.021 0.007 -0.022 0.002 -0.015 0.009
Grit 0.181 0.011 -0.043 0.013 0.106 0.002 0.140 0.013
Type 2 0.288 0.366 0.247 0.059 0.036 0.018 0.267 0.064
Type 3 0.827 0.075 0.119 0.057 -0.041 0.017 0.029 0.084
Type 4 0.989 0.103 -0.080 0.047 -0.004 0.015 0.218 0.055
Type 5 0.394 0.073 -0.119 0.054 -0.057 0.015 0.996 0.075
Type 6 0.017 0.102 -0.046 0.051 -0.014 0.017 0.236 0.064
Type 7 0.552 0.101 -0.072 0.068 0.023 0.022 -0.042 0.079
Type 8 0.186 0.070 -0.449 0.053 -0.075 0.015 0.483 0.053
1/Precision 0.303 0.001
N 96622 45471 36333 35283

Notes: Table reports estimates for the apply-to-college decision.
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Table F.8: Estimates for Major-College Application Model (Education Choices D3c)

Variable 3yr non-STEM 3yr STEM 3yr Business Health Sci Educ Humanities Soc Sci Sciences Engineer Medicine Business Law
β StdEr. β StdEr. β StdEr. β StdEr. β StdEr. β StdEr. β StdEr. β StdEr. β StdEr. β StdEr. β StdEr. β StdEr.

Intercept 0.312 0.319 -0.516 0.360 -0.330 0.261 0.595 0.409 1.013 0.461 -1.282 0.482 0.971 0.262 -1.294 0.317 -2.952 0.424 -2.097 0.653 -0.479 0.193 0.068 0.281
Mother College 0.184 0.054 -0.088 0.046 -0.049 0.055 0.048 0.080 0.123 0.074 0.186 0.082 0.196 0.046 0.022 0.047 0.145 0.052 0.587 0.112 0.025 0.042 0.036 0.061
Mother High School 0.054 0.067 -0.054 0.055 -0.076 0.063 -0.073 0.090 0.031 0.077 -0.028 0.109 0.051 0.055 -0.040 0.051 0.114 0.066 0.106 0.171 0.010 0.050 -0.015 0.078
Mother Educ missing -0.087 0.136 -0.074 0.106 -0.146 0.128 0.032 0.168 0.192 0.159 0.077 0.193 0.099 0.099 -0.003 0.109 0.058 0.124 0.560 0.242 -0.013 0.100 -0.093 0.152
Father College -0.085 0.061 -0.203 0.055 -0.194 0.057 0.092 0.085 0.077 0.077 -0.060 0.085 0.129 0.049 0.101 0.052 0.231 0.060 0.446 0.115 0.006 0.043 0.178 0.056
Father High School 0.120 0.057 0.018 0.050 -0.093 0.057 -0.091 0.075 -0.059 0.068 0.147 0.095 0.041 0.051 0.000 0.050 0.118 0.053 -0.083 0.141 0.058 0.046 0.116 0.070
Father Educ missing 0.189 0.109 -0.154 0.099 -0.107 0.106 -0.053 0.159 -0.387 0.137 0.082 0.175 0.087 0.091 0.090 0.099 0.215 0.112 0.145 0.212 0.120 0.086 0.293 0.133
Family Income -0.116 0.029 -0.112 0.026 0.101 0.025 -0.094 0.040 -0.110 0.036 -0.273 0.046 -0.038 0.022 -0.123 0.022 0.008 0.026 0.022 0.055 0.155 0.021 0.089 0.026
School-Ave Fam Income -0.280 0.079 -0.334 0.068 -0.136 0.070 -0.405 0.111 -0.696 0.103 -0.405 0.122 -0.161 0.059 -0.023 0.062 0.143 0.077 0.125 0.137 0.128 0.050 0.012 0.070
Health Endurance -0.129 0.020 0.027 0.017 -0.005 0.020 0.037 0.026 0.002 0.026 -0.164 0.034 -0.028 0.016 -0.015 0.016 0.071 0.019 0.193 0.042 -0.004 0.015 0.032 0.021
Health Strength 0.034 0.021 -0.004 0.018 -0.020 0.020 0.007 0.025 0.021 0.024 0.127 0.030 -0.006 0.017 0.003 0.016 -0.050 0.020 -0.028 0.044 -0.030 0.015 0.042 0.021
Health missing 0.005 0.105 0.084 0.097 -0.632 0.118 -0.151 0.132 -0.011 0.121 0.099 0.142 0.110 0.079 0.167 0.088 -0.059 0.113 -0.108 0.262 -0.116 0.072 -0.092 0.096
Took 9th Adv. Math -0.361 0.072 0.524 0.065 0.101 0.076 -0.107 0.091 -0.144 0.075 -0.311 0.095 -0.414 0.068 0.517 0.076 0.453 0.078 0.337 0.206 0.017 0.062 -0.791 0.093
Took 9th Adv. English 0.374 0.085 -0.156 0.064 -0.159 0.082 0.224 0.110 0.084 0.079 0.396 0.118 -0.127 0.070 0.341 0.080 -0.291 0.072 0.682 0.211 -0.343 0.076 -0.117 0.106
HS Academic Track -0.287 0.091 -0.346 0.072 0.397 0.085 -0.762 0.113 -0.232 0.112 -0.069 0.119 -0.284 0.086 -0.258 0.077 -0.362 0.079 -0.720 0.206 0.486 0.082 0.597 0.096
HS STEM Track -0.355 0.109 0.542 0.101 -0.153 0.127 -1.028 0.139 0.006 0.164 0.070 0.153 -0.470 0.099 0.056 0.096 1.248 0.126 0.555 0.228 0.434 0.108 0.564 0.125
HS GPA Bin 1 0.133 0.087 0.282 0.065 0.022 0.068 -0.067 0.118 0.086 0.122 0.074 0.125 -0.165 0.070 -0.027 0.062 0.257 0.060 -0.551 0.149 0.077 0.051 -0.082 0.092
HS GPA Bin 2 -0.005 0.083 0.420 0.071 -0.004 0.071 -0.047 0.120 0.064 0.128 0.206 0.118 -0.177 0.066 -0.055 0.068 0.522 0.074 -0.037 0.175 0.160 0.056 0.075 0.083
HS GPA Bin 3 -0.096 0.098 0.249 0.076 -0.109 0.074 -0.272 0.129 0.067 0.140 0.163 0.142 -0.267 0.078 -0.083 0.080 1.112 0.085 0.647 0.222 0.190 0.067 0.562 0.103
HS GPA Bin 4 -0.300 0.111 -0.089 0.087 -0.395 0.103 -0.348 0.156 -0.069 0.166 0.075 0.162 -0.196 0.094 0.183 0.095 1.773 0.104 0.886 0.307 0.509 0.081 0.915 0.124
SweSAT 0.275 0.088 -0.186 0.071 -0.092 0.081 -0.112 0.125 0.061 0.107 0.378 0.123 0.437 0.069 0.241 0.068 0.232 0.082 -0.416 0.173 0.143 0.065 0.489 0.091
SweSAT missing -0.052 0.093 -0.183 0.076 -0.408 0.084 -0.191 0.094 -0.024 0.106 -0.193 0.136 -0.136 0.072 -0.156 0.080 -0.036 0.097 -1.787 0.262 -0.312 0.071 -0.325 0.102
Log Admit Share 0.039 0.035 -0.418 0.124 -0.080 0.025 -0.007 0.033 -0.020 0.078 0.118 0.050 0.153 0.027 0.034 0.044 0.364 0.102 0.724 0.067 0.041 0.022 0.191 0.018
Within-Sch-Across-Cohort IV 0.015 0.016 0.038 0.012 -0.023 0.018 0.025 0.020 0.064 0.027 0.043 0.021 0.063 0.013 0.087 0.012 0.014 0.012 0.004 0.025 0.046 0.010 0.018 0.013
School Ave Enroll Maj 3.874 1.158 2.457 0.246 -1.655 0.923 5.281 1.755 5.413 0.924 12.182 2.204 11.742 1.056 6.250 0.573 1.553 0.345 7.762 3.387 3.415 0.387 3.922 1.474
Min Log Distance 0.009 0.017 0.094 0.014 -0.052 0.015 0.054 0.022 0.068 0.020 0.045 0.025 0.025 0.013 0.052 0.013 0.035 0.016 -0.049 0.030 -0.012 0.011 -0.056 0.017
Cognitive 0.058 0.039 0.012 0.035 -0.048 0.037 -0.107 0.060 0.052 0.055 -0.088 0.063 0.006 0.033 0.063 0.032 0.238 0.041 0.336 0.090 0.041 0.030 0.031 0.040
Interpersonal -0.035 0.025 -0.083 0.021 0.052 0.023 0.070 0.030 0.040 0.030 -0.179 0.033 0.112 0.019 -0.090 0.019 0.021 0.021 0.115 0.046 0.071 0.018 0.127 0.023
Grit 0.027 0.048 -0.177 0.041 0.041 0.041 -0.022 0.070 0.091 0.070 -0.106 0.066 0.071 0.038 -0.094 0.038 -0.038 0.047 0.268 0.103 0.133 0.032 0.129 0.046
Type 2 -1.051 0.170 -0.825 0.329 -2.076 0.189 2.805 0.155 -0.131 0.269 -0.624 0.262 -1.180 0.153 -0.313 0.252 -0.728 0.396 3.356 0.278 -2.222 0.098 -2.137 0.132
Type 3 -0.861 0.202 -0.287 0.475 1.226 0.131 -1.785 0.376 -1.579 0.441 -2.095 0.367 -1.362 0.198 -0.585 0.424 -2.322 0.656 -1.280 2.554 0.704 0.055 -1.731 0.175
Type 4 -0.343 0.168 -0.274 0.297 -1.755 0.192 0.540 0.184 3.113 0.250 0.441 0.215 -1.040 0.137 -0.615 0.243 -0.611 0.354 0.215 0.349 -2.256 0.103 -1.870 0.130
Type 5 -2.582 0.194 1.879 0.278 -2.810 0.265 -1.664 0.254 -1.215 0.307 -1.217 0.266 -3.182 0.213 0.541 0.207 2.846 0.320 1.283 0.336 -2.398 0.140 -2.611 0.198
Type 6 -0.663 0.178 1.745 0.269 -0.888 0.210 -0.571 0.248 -0.367 0.358 0.244 0.229 -1.767 0.126 2.217 0.183 0.824 0.352 1.322 0.329 -1.364 0.180 -2.365 0.164
Type 7 1.814 0.099 0.032 0.504 -0.233 0.218 0.520 0.241 0.768 0.397 2.264 0.155 0.224 0.228 -0.671 0.365 -1.934 0.699 0.252 0.699 -1.488 0.152 -1.252 0.242
Type 8 -0.610 0.171 3.738 0.286 -0.791 0.190 -1.199 0.276 0.214 0.277 0.030 0.262 -2.568 0.212 0.526 0.222 2.150 0.338 -0.759 0.504 -1.815 0.124 -3.478 0.342
N 37012 37012 37012 37012 37012 37012 37012 37012 37012 37012 37012 37012

Notes: Table reports model estimates for the college application model.
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Table F.9: Estimates for Switch Major Model (Education Choices D4)

Variable 3yr STEM 3yr Bus Hlth Sci Educ Humanit. Soc Sci Sci Eng Med Bus Law
β StdEr. β StdEr. β StdEr. β StdEr. β StdEr. β StdEr. β StdEr. β StdEr. β StdEr. β StdEr. β StdEr.

Intercept -0.597 0.458 -2.656 0.572 -1.124 0.683 -0.307 0.575 -4.266 0.744 -1.234 0.508 -4.274 0.514 -4.385 0.441 -8.234 1.417 -3.242 0.426 -1.770 0.587
Mother College -0.164 0.084 -0.090 0.124 0.197 0.126 0.118 0.101 0.313 0.127 0.177 0.099 -0.005 0.097 0.030 0.086 0.329 0.168 0.074 0.095 0.187 0.153
Mother High School 0.149 0.099 0.058 0.143 0.277 0.163 0.170 0.117 0.126 0.176 0.043 0.133 0.191 0.116 0.274 0.111 -0.066 0.294 0.282 0.117 -0.343 0.209
Mother Educ missing 0.110 0.201 -0.412 0.307 0.139 0.357 -0.175 0.228 -0.207 0.349 -0.371 0.255 0.221 0.244 0.313 0.233 0.068 0.513 -0.074 0.239 -0.521 0.423
Father College -0.353 0.089 -0.381 0.126 -0.176 0.151 -0.165 0.101 -0.072 0.140 0.016 0.105 -0.222 0.095 -0.079 0.093 0.171 0.179 -0.156 0.094 -0.040 0.156
Father High School -0.008 0.089 -0.034 0.126 -0.202 0.145 0.103 0.103 0.133 0.148 0.216 0.110 0.063 0.110 0.220 0.098 0.072 0.258 -0.023 0.103 0.228 0.201
Father Educ missing -0.264 0.172 0.311 0.270 -0.093 0.323 0.136 0.209 0.297 0.286 0.225 0.231 -0.208 0.219 0.056 0.193 0.323 0.446 0.072 0.225 0.609 0.374
Family Income 0.031 0.037 0.076 0.058 0.055 0.063 -0.023 0.047 -0.027 0.063 0.029 0.048 -0.020 0.047 0.107 0.041 0.138 0.080 0.211 0.043 0.111 0.071
School-Ave Fam Income -0.318 0.116 0.069 0.160 -0.520 0.178 -0.359 0.129 -0.101 0.177 -0.004 0.127 -0.113 0.126 -0.076 0.121 0.050 0.205 0.438 0.112 0.065 0.167
Health Endurance 0.174 0.031 0.201 0.052 0.099 0.048 0.098 0.038 -0.031 0.053 -0.007 0.040 0.080 0.038 0.229 0.035 0.370 0.070 0.115 0.038 0.092 0.063
Health Strength -0.019 0.032 -0.044 0.046 0.074 0.052 0.016 0.037 0.050 0.046 -0.083 0.042 0.020 0.038 -0.096 0.035 -0.144 0.082 -0.114 0.036 -0.065 0.063
Health missing -0.010 0.152 0.218 0.225 -0.048 0.237 0.074 0.171 0.068 0.224 -0.110 0.184 0.024 0.176 -0.088 0.162 0.227 0.330 -0.027 0.175 -0.164 0.307
Took 9th Adv. Math 0.512 0.107 0.093 0.172 0.010 0.144 0.154 0.123 0.199 0.166 -0.315 0.137 0.570 0.132 0.639 0.135 0.803 0.469 0.376 0.132 -0.757 0.235
Took 9th Adv. English -0.154 0.112 -0.302 0.170 -0.002 0.176 -0.006 0.124 0.164 0.197 -0.249 0.163 0.004 0.139 -0.225 0.126 0.130 0.464 -0.362 0.140 -0.173 0.301
HS Academic Track -0.143 0.107 0.091 0.152 -0.133 0.156 -0.029 0.118 0.278 0.159 0.229 0.140 0.025 0.127 0.220 0.133 0.169 0.314 0.340 0.123 0.682 0.243
HS STEM Track 0.173 0.127 0.134 0.203 0.014 0.201 -0.137 0.155 0.056 0.203 0.352 0.178 0.571 0.146 1.199 0.142 1.339 0.322 0.371 0.152 0.920 0.292
Enroll 3yr non-STEM -0.937 0.248 0.000 0.000 -1.913 0.268 -1.792 0.316 -0.307 0.292 -1.725 0.288 0.000 0.000 0.000 0.000 0.000 0.000 -2.077 0.246 -2.333 0.302
Enroll 3yr STEM 5.140 0.237 1.722 0.216 1.081 0.255 0.819 0.315 0.231 0.420 -0.052 0.319 4.032 0.217 4.276 0.170 0.000 0.000 1.084 0.223 0.000 0.000
Enroll 3yr Bus 1.626 0.270 4.885 0.157 0.000 0.000 0.138 0.400 0.000 0.000 -0.151 0.389 2.134 0.337 0.000 0.000 0.000 0.000 2.211 0.225 0.000 0.000
Enroll Hlth Sci 0.880 0.336 0.000 0.000 5.023 0.244 0.685 0.384 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2.447 0.311 0.000 0.000 0.000 0.000
Enroll Educ 0.993 0.251 0.000 0.000 0.617 0.274 3.980 0.304 2.216 0.298 0.244 0.319 3.263 0.229 1.746 0.232 0.000 0.000 0.000 0.000 0.000 0.000
Enroll Humanit. 0.000 0.000 0.000 0.000 0.000 0.000 0.647 0.330 4.329 0.299 1.516 0.298 2.978 0.283 2.104 0.250 0.000 0.000 0.705 0.278 0.000 0.000
Enroll Soc Sci -0.521 0.293 0.000 0.000 -0.691 0.305 -0.557 0.348 0.542 0.357 2.338 0.268 1.632 0.271 0.000 0.000 0.000 0.000 0.285 0.222 -0.258 0.238
Enroll Science 3.498 0.264 1.969 0.310 2.158 0.281 2.038 0.347 1.603 0.402 1.420 0.318 6.914 0.236 3.806 0.212 2.886 0.258 1.890 0.262 1.239 0.300
Enroll Engineer 2.975 0.239 0.000 0.000 0.927 0.290 1.053 0.305 0.898 0.387 0.006 0.318 3.679 0.225 5.869 0.176 2.083 0.251 1.500 0.238 0.649 0.279
Enroll Medicine 0.000 0.000 0.000 0.000 0.735 1.566 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 5.166 0.323 0.000 0.000 0.000 0.000
Enroll Business 1.111 0.269 3.213 0.155 0.554 0.285 0.693 0.326 0.000 0.000 1.069 0.294 3.254 0.220 2.005 0.230 0.000 0.000 3.886 0.204 0.571 0.231
Enroll Law 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.455 0.346 2.363 0.411 0.000 0.000 0.000 0.000 1.127 0.278 4.432 0.212
HS GPA Bin 1 -0.043 0.101 -0.030 0.169 0.120 0.240 0.009 0.139 -0.138 0.219 -0.215 0.169 0.079 0.123 0.216 0.087 0.563 0.257 -0.132 0.119 -0.022 0.237
HS GPA Bin 2 0.042 0.106 -0.388 0.162 0.134 0.237 -0.035 0.134 0.091 0.189 0.001 0.140 0.206 0.136 0.553 0.103 0.503 0.275 -0.176 0.133 0.012 0.226
HS GPA Bin 3 -0.016 0.114 -0.483 0.178 0.059 0.240 -0.187 0.152 0.001 0.193 -0.115 0.156 0.296 0.140 0.756 0.119 1.283 0.334 -0.153 0.141 0.346 0.291
HS GPA Bin 4 -0.135 0.122 -0.511 0.199 0.109 0.273 -0.252 0.163 0.187 0.215 0.069 0.183 0.503 0.160 1.194 0.139 1.565 0.406 0.017 0.163 0.678 0.343
SweSAT -0.676 0.108 -0.285 0.165 -0.227 0.153 -0.441 0.129 -0.152 0.178 0.146 0.136 -0.300 0.122 -0.889 0.118 0.759 0.256 -0.572 0.124 0.078 0.212
SweSAT miss -0.225 0.122 -0.410 0.190 -0.675 0.170 -0.133 0.140 0.391 0.208 -0.403 0.183 -0.256 0.151 -0.772 0.138 -0.204 0.402 -0.836 0.152 -0.866 0.275
Cognitive 0.103 0.050 0.056 0.076 -0.052 0.078 0.022 0.057 0.153 0.077 0.079 0.062 0.107 0.058 0.219 0.056 0.138 0.127 0.199 0.058 0.031 0.099
Interpersonal 0.017 0.032 0.106 0.042 0.110 0.048 0.084 0.038 -0.049 0.050 0.039 0.036 -0.021 0.035 0.046 0.034 0.183 0.068 0.166 0.033 0.162 0.058
Grit -0.116 0.050 0.038 0.075 -0.048 0.085 -0.026 0.060 0.097 0.081 0.092 0.063 -0.092 0.058 -0.018 0.055 0.068 0.122 0.174 0.060 0.045 0.110
Type 2 0.278 0.286 -0.744 1.900 1.847 0.285 0.422 0.286 0.719 0.639 -0.221 0.256 0.400 0.279 0.203 0.274 2.935 1.208 -0.416 0.254 -1.470 0.486
Type 3 -0.019 0.301 0.543 0.274 0.376 0.340 -0.312 0.327 0.937 0.631 -0.652 0.244 0.249 0.323 -0.258 0.336 -24.897 12.201 0.532 0.220 -1.819 0.400
Type 4 -0.151 0.239 0.035 0.322 1.068 0.301 0.791 0.229 0.930 0.419 -0.397 0.214 -0.035 0.232 -0.430 0.272 0.799 1.260 -0.488 0.213 -1.547 0.330
Type 5 0.711 0.216 0.999 0.345 1.089 0.330 0.714 0.285 1.940 0.579 0.138 0.297 0.741 0.242 1.661 0.212 1.696 1.216 0.482 0.232 -0.822 2.031
Type 6 0.567 0.207 0.345 0.285 0.645 0.298 0.227 0.267 1.351 0.498 -0.470 0.248 1.049 0.217 0.605 0.222 0.840 1.229 -0.317 0.239 -1.392 0.391
Type 7 -0.052 0.320 -0.469 0.334 0.995 0.363 0.445 0.355 1.412 0.402 0.177 0.220 -1.189 0.410 -1.450 0.471 -0.301 1.352 -0.970 0.298 -0.897 0.387
Type 8 1.106 0.212 0.205 0.363 1.120 0.312 0.832 0.283 2.014 0.515 -0.199 0.348 0.448 0.242 1.136 0.227 0.247 1.266 0.006 0.251 -1.147 2.062
N 37449 37449 37449 37449 37449 37449 37449 37449 37449 37449 37449

Notes: Table reports estimates for the switching majors model. Enrollment in certain majors are omitted from some choices if the probability of making that transition in the data is less than 0.00025 (10
observations).
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Table F.10: Estimates for Graduate College Models I (Education Choices D5)

Variable 3yr non-STEM 3yr STEM 3yr Business Health Sci Education Humanities
β StdEr. β StdEr. β StdEr. β StdEr. β StdEr. β StdEr.

Intercept 0.020 0.262 -0.544 0.214 -1.125 0.467 0.263 0.410 0.242 0.276 0.338 0.622
Mother College -0.119 0.067 0.119 0.034 0.240 0.110 0.223 0.081 0.046 0.057 0.039 0.142
Mother High School 0.268 0.092 0.022 0.039 0.067 0.126 0.043 0.103 0.133 0.069 0.012 0.208
Mother Educ missing 0.221 0.178 0.077 0.085 0.392 0.269 0.164 0.228 0.335 0.142 0.053 0.423
Father College 0.203 0.069 0.206 0.035 0.091 0.119 0.053 0.089 0.065 0.061 0.473 0.147
Father High School -0.118 0.080 0.045 0.033 0.160 0.119 0.152 0.090 0.035 0.062 0.182 0.180
Father Educ missing -0.028 0.156 0.045 0.074 0.242 0.227 0.071 0.198 -0.285 0.123 0.332 0.388
Family Income 0.065 0.035 0.126 0.018 0.139 0.052 0.124 0.045 0.065 0.033 0.144 0.073
School-Ave Fam Income 0.012 0.084 0.075 0.055 0.024 0.142 -0.090 0.134 -0.060 0.093 -0.141 0.197
Health Endurance 0.036 0.025 0.004 0.013 0.072 0.040 0.072 0.033 0.035 0.022 0.008 0.058
Health Strength -0.062 0.026 -0.107 0.012 -0.099 0.041 -0.079 0.029 -0.116 0.020 0.067 0.051
Health missing 0.175 0.126 -0.070 0.067 0.398 0.216 -0.094 0.165 -0.199 0.115 -0.005 0.266
Took 9th Adv. Math 0.108 0.082 -0.000 0.050 -0.003 0.136 -0.013 0.085 0.065 0.063 -0.295 0.180
Took 9th Adv. English -0.130 0.099 -0.123 0.040 -0.056 0.147 0.031 0.091 -0.129 0.071 0.059 0.232
HS Academic Track 0.127 0.078 -0.003 0.047 0.141 0.131 -0.122 0.094 -0.042 0.061 0.159 0.169
HS STEM Track 0.012 0.099 -0.188 0.040 -0.088 0.158 -0.085 0.118 -0.288 0.077 -0.277 0.198
Cognitive -0.002 0.030 0.169 0.017 0.155 0.052 0.191 0.039 0.093 0.026 0.331 0.061
Interpersonal 0.117 0.024 0.093 0.012 0.123 0.042 0.162 0.031 0.074 0.023 0.122 0.050
Grit 0.131 0.036 0.343 0.019 0.263 0.059 0.237 0.045 0.288 0.033 0.371 0.070
Type 2 0.427 0.262 0.174 0.087
Type 3 0.196 0.265 0.125 0.137
Type 4 -0.383 0.193 0.106 0.063
Type 5 -0.156 0.150
Type 6 -0.123 0.166
Type 7 -0.706 0.111 0.056 0.273 -0.482 0.220 -0.958 0.184
Type 8 -0.142 0.146
N 2508 10234 998 1974 3593 735

Notes: Table reports estimates for the college graduation models. Imprecise loadings on the types cause problems for the simulation. In order to avoid
this, we first estimate the model without constraining the loadings. We then calculate the fraction of college graduates of a certain type that are expected
to graduate in a certain major. The loadings are set to zero in the graduation and outcome models if less than 0.002 of the population is predicted in
that cel. The model is re-estimated pooling the low-probability cells.
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Table F.11: Estimates for Graduate College Models II (Education Choices D5)

Variable Soc Sci Sciences Engineer Medicine Business Law
β StdEr. β StdEr. β StdEr. β StdEr. β StdEr. β StdEr.

Intercept -1.159 0.395 -0.058 0.281 -0.510 0.195 -1.769 2.810 -1.172 0.214 -0.920 0.494
Mother College 0.149 0.087 0.217 0.054 0.233 0.037 0.264 0.204 0.150 0.056 0.253 0.124
Mother High School 0.118 0.121 0.196 0.082 0.061 0.064 -0.643 2.154 0.146 0.077 0.112 0.171
Mother Educ missing -0.017 0.275 0.510 0.163 0.257 0.118 -0.947 2.498 0.152 0.166 0.151 0.312
Father College 0.151 0.091 0.200 0.064 0.191 0.042 0.227 0.210 0.085 0.060 0.144 0.130
Father High School 0.244 0.115 0.044 0.077 -0.059 0.054 -0.272 0.764 0.116 0.072 0.198 0.178
Father Educ missing 0.427 0.247 -0.174 0.155 -0.104 0.103 0.557 1.255 0.155 0.140 0.250 0.278
Family Income 0.070 0.042 0.061 0.031 0.145 0.020 0.197 0.093 0.063 0.023 0.135 0.046
School-Ave Fam Income 0.239 0.128 -0.116 0.082 0.028 0.053 0.548 0.290 0.104 0.065 0.199 0.141
Health Endurance -0.051 0.036 0.004 0.024 -0.000 0.016 0.131 0.078 -0.025 0.022 -0.050 0.050
Health Strength -0.041 0.037 -0.089 0.024 -0.144 0.017 -0.180 0.089 -0.121 0.023 -0.129 0.047
Health missing -0.172 0.174 -0.052 0.111 -0.058 0.079 -0.227 0.332 0.129 0.112 -0.062 0.240
Took 9th Adv. Math -0.123 0.123 -0.088 0.102 -0.021 0.107 0.691 0.737 0.159 0.089 0.060 0.175
Took 9th Adv. English -0.081 0.142 -0.140 0.097 -0.083 0.083 -0.133 1.631 0.039 0.103 -0.136 0.294
HS Academic Track 0.103 0.111 0.001 0.081 -0.110 0.083 0.298 0.885 0.048 0.086 0.059 0.185
HS STEM Track 0.157 0.136 0.241 0.085 0.022 0.067 -0.330 0.472 0.134 0.101 -0.214 0.203
Cognitive 0.126 0.040 0.129 0.027 0.147 0.019 0.136 0.097 0.102 0.027 0.179 0.054
Interpersonal -0.011 0.033 0.059 0.022 0.115 0.016 0.064 0.068 0.018 0.022 0.054 0.044
Grit 0.250 0.046 0.231 0.031 0.301 0.021 0.380 0.105 0.232 0.027 0.354 0.056
Type 2 0.825 0.223
Type 3 0.035 0.226 0.262 0.243 0.185 0.068 -0.502 0.937
Type 5 -0.270 0.146 0.148 0.070
Type 6 -0.160 0.092 0.218 0.099
Type 7 0.329 0.163 -0.057 0.270 -0.346 0.294
Type 8 0.276 0.083
N 1428 3026 7960 703 3321 969

Notes: Table reports estimates for the college graduation models. Imprecise loadings on the types cause problems for the simulation. In order to avoid
this, we first estimate the model without constraining the loadings. We then calculate the fraction of college graduates of a certain type that are expected
to graduate in a certain major. The loadings are set to zero in the graduation and outcome models if less than 0.002 of the population is predicted in
that cel. The model is re-estimated pooling the low-probability cells.
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Table F.12: Estimates for Log Wage Models I (Outcomes Yms)

Variable HSDO HS-Voc HS-Aca HS-STEM CollDO-low CollDO-high
β StdEr. β StdEr. β StdEr. β StdEr. β StdEr. β StdEr.

Intercept 9.935 0.058 9.870 0.022 9.489 0.075 9.660 0.140 10.104 0.143 9.819 0.074
Mother College 0.015 0.013 0.024 0.005 0.053 0.013 0.027 0.017 0.012 0.010 0.063 0.013
Mother High School 0.013 0.007 0.015 0.004 0.023 0.013 0.017 0.017 0.042 0.012 -0.011 0.015
Mother Educ missing 0.020 0.018 0.016 0.008 0.083 0.031 0.009 0.036 0.017 0.026 0.033 0.033
Father College 0.026 0.016 0.008 0.007 0.019 0.013 0.056 0.018 0.009 0.012 0.057 0.013
Father High School -0.002 0.008 0.015 0.004 0.030 0.012 0.036 0.014 0.041 0.010 0.029 0.013
Father Educ missing 0.010 0.015 0.011 0.007 0.008 0.025 0.074 0.031 0.024 0.022 0.033 0.028
Family Income 0.020 0.007 0.031 0.003 0.062 0.006 0.053 0.009 0.045 0.007 0.047 0.007
School-Ave Fam Income 0.045 0.018 0.080 0.007 0.167 0.028 0.151 0.025 0.080 0.017 0.125 0.018
Health Endurance 0.020 0.004 0.020 0.001 0.023 0.005 0.016 0.006 0.019 0.004 0.024 0.005
Health Strength -0.007 0.003 -0.015 0.001 -0.020 0.004 -0.012 0.005 -0.019 0.004 -0.023 0.004
Health missing -0.004 0.016 0.003 0.007 -0.001 0.022 0.019 0.031 0.005 0.022 -0.007 0.026
Took 9th Adv. Math 0.041 0.016 0.005 0.010 0.027 0.017 0.034 0.041 -0.007 0.017 0.020 0.016
Took 9th Adv. English 0.016 0.017 -0.000 0.008 0.045 0.019 0.021 0.030 -0.026 0.015 -0.005 0.017
HS Academic Track 0.026 0.014 0.015 0.014
HS STEM Track 0.041 0.013 0.053 0.017
Cognitive 0.022 0.006 0.029 0.003 0.054 0.007 0.044 0.008 0.040 0.006 0.050 0.006
Interpersonal 0.018 0.004 0.026 0.003 0.056 0.005 0.048 0.006 0.044 0.004 0.054 0.005
Grit 0.000 0.008 0.030 0.004 0.054 0.008 0.049 0.009 0.051 0.007 0.056 0.007
Type 2 0.077 0.033 -0.084 0.029 -0.069 0.032 -0.094 0.127 -0.351 0.134 -0.187 0.063
Type 3 0.313 0.036 0.618 0.021 0.512 0.042 0.579 0.378 -0.146 0.217 0.311 0.085
Type 4 -0.154 0.036 -0.034 0.020 -0.038 0.026 -0.021 0.111 -0.380 0.143 -0.214 0.044
Type 5 0.862 0.111 -0.176 0.013 -0.349 0.041 -0.017 0.124 -0.096 0.141 0.003 0.047
Type 6 -0.053 0.060 0.059 0.024 0.091 0.038 -0.013 0.122 -0.209 0.144 -0.044 0.051
Type 7 -0.182 0.168 -0.223 0.034 0.028 0.036 -0.134 0.136 -0.275 0.148 -0.225 0.058
Type 8 -0.024 0.190 0.252 0.011 0.053 0.093 0.049 0.093 -0.116 0.128 -0.081 0.050
1/Precision 0.128 0.004 0.127 0.002 0.258 0.008 0.256 0.009 0.235 0.004 0.279 0.006
N 3183 20271 4112 2094 3745 3666

Notes: Table reports estimates for the log wage models. Imprecise loadings on the types cause problems for the simulation. In order to avoid this, we
first estimate the model without constraining the loadings. We then calculate the fraction of college graduates of a certain type that are expected to
graduate in a certain major. The loadings are set to zero in the graduation and outcome models if less than 0.002 of the population is predicted in that
cel. The model is re-estimated pooling the low-probability cells.
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Table F.13: Estimates for Log Wage Models II (Outcomes Yms)

Variable 3yr non-STEM 3yr STEM 3yr Business Health Sci Educ Humanities
β StdEr. β StdEr. β StdEr. β StdEr. β StdEr. β StdEr.

Intercept 9.951 0.111 10.381 0.087 9.480 0.279 10.047 0.075 10.098 0.041 10.081 0.150
Mother College 0.036 0.026 0.021 0.009 0.112 0.054 0.018 0.015 0.014 0.008 0.054 0.034
Mother High School 0.008 0.035 -0.007 0.012 -0.052 0.078 0.019 0.014 0.015 0.010 0.012 0.035
Mother Educ missing 0.021 0.058 -0.018 0.024 -0.042 0.138 0.059 0.029 0.016 0.018 0.039 0.086
Father College 0.041 0.026 0.013 0.010 0.044 0.062 0.057 0.016 0.021 0.009 -0.004 0.037
Father High School 0.035 0.028 0.018 0.010 0.111 0.063 0.027 0.015 0.009 0.009 0.047 0.035
Father Educ missing 0.051 0.049 0.044 0.021 0.148 0.102 -0.003 0.025 0.007 0.014 0.006 0.077
Family Income 0.066 0.015 0.028 0.005 0.040 0.021 0.019 0.008 0.005 0.005 0.004 0.019
School-Ave Fam Income 0.053 0.038 0.064 0.017 0.255 0.090 0.050 0.025 0.017 0.014 -0.011 0.046
Health Endurance 0.029 0.010 0.013 0.003 0.069 0.025 0.019 0.006 0.010 0.003 0.012 0.014
Health Strength -0.038 0.009 -0.017 0.003 -0.037 0.025 -0.008 0.004 -0.004 0.003 0.001 0.011
Health missing -0.018 0.046 0.042 0.018 -0.060 0.118 0.044 0.032 0.015 0.020 0.067 0.049
Took 9th Adv. Math 0.012 0.028 -0.011 0.016 0.002 0.073 0.021 0.012 -0.005 0.010 -0.005 0.040
Took 9th Adv. English -0.024 0.036 -0.014 0.013 -0.040 0.084 -0.033 0.015 -0.010 0.011 0.085 0.048
HS Academic Track 0.038 0.026 0.007 0.015 0.002 0.070 -0.025 0.015 0.012 0.009 0.010 0.035
HS STEM Track 0.086 0.034 0.049 0.012 -0.033 0.094 0.041 0.020 0.034 0.011 -0.013 0.043
Cognitive 0.043 0.010 0.028 0.005 0.125 0.028 0.035 0.007 0.029 0.004 0.068 0.015
Interpersonal 0.061 0.009 0.044 0.004 0.092 0.023 0.034 0.005 0.026 0.003 0.018 0.009
Grit 0.040 0.013 0.028 0.006 0.109 0.031 0.046 0.008 0.021 0.005 0.053 0.015
Type 2 -0.317 0.116 -0.002 0.016
Type 3 -0.212 0.123 0.199 0.082
Type 4 -0.498 0.094 0.002 0.008
Type 5 -0.167 0.071
Type 6 -0.214 0.075
Type 7 -0.102 0.037 -0.283 0.095 0.318 0.093 0.180 0.042
Type 8 -0.153 0.069
1/Precision 0.292 0.011 0.200 0.005 0.348 0.020 0.191 0.009 0.128 0.008 0.197 0.016
N 917 3578 286 1181 1932 293

Notes: Table reports estimates for the log wage models. Imprecise loadings on the types cause problems for the simulation. In order to avoid this, we
first estimate the model without constraining the loadings. We then calculate the fraction of college graduates of a certain type that are expected to
graduate in a certain major. The loadings are set to zero in the graduation and outcome models if less than 0.002 of the population is predicted in that
cel. The model is re-estimated pooling the low-probability cells.
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Table F.14: Estimates for Log Wage Models III (Outcomes Yms)

Variable Soc Sci Sciences Engineer Medicine Business Law
β StdEr. β StdEr. β StdEr. β StdEr. β StdEr. β StdEr.

Intercept 9.916 0.168 10.347 0.098 10.317 0.076 10.436 0.182 9.873 0.116 9.969 0.150
Mother College 0.029 0.023 -0.013 0.019 0.014 0.010 0.046 0.028 0.047 0.024 0.030 0.037
Mother High School 0.015 0.038 -0.033 0.027 0.012 0.013 -0.050 0.052 -0.018 0.034 0.087 0.062
Mother Educ missing 0.145 0.075 0.065 0.052 0.003 0.026 -0.011 0.096 -0.112 0.096 0.020 0.089
Father College 0.046 0.026 0.009 0.019 0.011 0.010 0.064 0.028 0.090 0.027 -0.012 0.039
Father High School 0.007 0.036 0.023 0.024 0.035 0.012 -0.023 0.044 0.045 0.028 0.053 0.059
Father Educ missing -0.073 0.066 -0.093 0.046 0.042 0.026 0.001 0.087 0.170 0.088 0.068 0.081
Family Income 0.045 0.013 0.036 0.011 0.040 0.005 0.023 0.009 0.061 0.011 0.058 0.017
School-Ave Fam Income 0.086 0.051 -0.023 0.028 0.063 0.015 -0.001 0.027 0.125 0.032 0.039 0.036
Health Endurance 0.031 0.011 0.018 0.008 0.018 0.004 0.014 0.009 0.043 0.011 0.029 0.015
Health Strength -0.011 0.011 0.000 0.008 -0.018 0.004 -0.018 0.010 -0.025 0.013 -0.037 0.014
Health missing 0.107 0.054 0.068 0.037 0.005 0.021 0.009 0.055 -0.002 0.045 0.182 0.079
Took 9th Adv. Math 0.016 0.031 0.079 0.037 -0.004 0.025 0.075 0.118 0.012 0.043 0.032 0.065
Took 9th Adv. English -0.027 0.038 -0.007 0.035 0.012 0.018 -0.025 0.152 -0.000 0.050 0.066 0.107
HS Academic Track 0.039 0.034 0.080 0.029 -0.058 0.022 -0.023 0.063 0.045 0.036 0.067 0.080
HS STEM Track 0.018 0.043 0.073 0.027 0.062 0.017 0.028 0.060 0.055 0.046 0.022 0.087
Cognitive 0.061 0.013 0.015 0.008 0.038 0.005 0.069 0.012 0.092 0.012 0.067 0.017
Interpersonal 0.051 0.009 0.034 0.007 0.052 0.004 0.016 0.009 0.092 0.010 0.080 0.013
Grit 0.042 0.013 -0.003 0.010 0.036 0.005 0.089 0.012 0.100 0.013 0.066 0.019
Type 2 0.119 0.036
Type 3 0.763 0.109 0.236 0.068 0.086 0.040 0.590 0.145
Type 5 -0.062 0.092 -0.112 0.054
Type 6 -0.034 0.032 -0.251 0.056
Type 7 -0.011 0.053 -0.339 0.151 0.129 0.274
Type 8 -0.158 0.057
1/Precision 0.217 0.012 0.241 0.007 0.239 0.005 0.223 0.009 0.346 0.011 0.272 0.016
N 607 1151 3959 554 1187 492

Notes: Table reports estimates for the log wage models. Imprecise loadings on the types cause problems for the simulation. In order to avoid this, we
first estimate the model without constraining the loadings. We then calculate the fraction of college graduates of a certain type that are expected to
graduate in a certain major. The loadings are set to zero in the graduation and outcome models if less than 0.002 of the population is predicted in that
cel. The model is re-estimated pooling the low-probability cells.
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Table F.15: Estimates for Log PV Disposable Income Models I (Outcomes Yms)

Variable HSDO HS-Voc HS-Aca HS-STEM CollDO-low CollDO-high
β StdEr. β StdEr. β StdEr. β StdEr. β StdEr. β StdEr.

Intercept 7.968 0.059 7.998 0.023 7.585 0.068 7.765 0.206 8.314 0.233 8.129 0.089
Mother College -0.019 0.013 0.009 0.005 0.032 0.013 0.059 0.022 -0.004 0.014 0.014 0.016
Mother High School 0.008 0.009 0.015 0.004 0.032 0.013 -0.023 0.021 0.045 0.017 0.013 0.020
Mother Educ missing 0.037 0.019 0.022 0.009 0.074 0.036 0.070 0.047 0.046 0.038 0.012 0.044
Father College 0.014 0.018 0.006 0.007 0.038 0.014 0.008 0.025 0.001 0.017 0.050 0.017
Father High School -0.012 0.008 0.012 0.004 0.016 0.012 0.049 0.019 0.019 0.015 0.015 0.018
Father Educ missing -0.012 0.017 0.005 0.007 0.019 0.030 0.033 0.042 -0.030 0.034 0.025 0.036
Family Income 0.052 0.007 0.057 0.003 0.083 0.006 0.077 0.011 0.092 0.009 0.079 0.009
School-Ave Fam Income 0.063 0.017 0.072 0.007 0.148 0.024 0.140 0.027 0.032 0.023 0.052 0.023
Health Endurance 0.027 0.004 0.027 0.001 0.043 0.004 0.035 0.007 0.030 0.006 0.042 0.007
Health Strength -0.010 0.003 -0.018 0.001 -0.035 0.005 -0.019 0.007 -0.030 0.005 -0.032 0.006
Health missing -0.007 0.019 -0.028 0.007 -0.013 0.022 0.026 0.037 -0.075 0.030 -0.091 0.034
Took 9th Adv. Math 0.032 0.017 0.004 0.010 0.038 0.018 -0.021 0.048 -0.025 0.026 0.031 0.025
Took 9th Adv. English -0.000 0.018 -0.007 0.009 0.047 0.020 0.028 0.039 -0.030 0.023 -0.041 0.025
HS Academic Track 0.084 0.020 0.047 0.023
HS STEM Track 0.057 0.019 0.057 0.024
Cognitive 0.034 0.007 0.035 0.003 0.074 0.007 0.058 0.011 0.054 0.008 0.061 0.008
Interpersonal 0.031 0.004 0.037 0.003 0.089 0.005 0.076 0.008 0.087 0.006 0.089 0.006
Grit 0.013 0.009 0.041 0.004 0.066 0.008 0.049 0.013 0.073 0.010 0.077 0.009
Type 2 0.099 0.048 -0.090 0.029 -0.108 0.042 -0.136 0.323 -0.467 0.220 -0.272 0.119
Type 3 0.303 0.029 0.566 0.021 0.499 0.042 0.647 0.490 -0.177 0.294 0.292 0.087
Type 4 -0.429 0.103 -0.040 0.021 -0.064 0.030 -0.007 0.159 -0.714 0.274 -0.248 0.054
Type 5 0.790 0.064 -0.532 0.026 -0.969 0.032 -0.016 0.217 -0.120 0.219 -0.020 0.057
Type 6 -0.110 0.105 0.059 0.024 0.081 0.037 -0.019 0.187 -0.228 0.231 -0.078 0.062
Type 7 -1.061 0.116 -1.020 0.019 -0.055 0.045 -0.252 0.301 -0.363 0.247 -0.385 0.094
Type 8 -0.726 0.161 0.220 0.010 0.039 0.089 0.075 0.150 -0.095 0.207 -0.095 0.065
1/Precision 0.161 0.005 0.174 0.002 0.370 0.009 0.441 0.024 0.429 0.008 0.496 0.007
N 8369 43958 8129 3890 6336 6198

Notes: Table reports estimates for the log PV disposable income models. Imprecise loadings on the types cause problems for the simulation. In order
to avoid this, we first estimate the model without constraining the loadings. We then calculate the fraction of college graduates of a certain type that
are expected to graduate in a certain major. The loadings are set to zero in the graduation and outcome models if less than 0.002 of the population is
predicted in that cel. The model is re-estimated pooling the low-probability cells.
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Table F.16: Estimates for Log PV Disposable Income Models II (Outcomes Yms)

Variable 3yr non-STEM 3yr STEM 3yr Business Health Sci Educ Humanities
β StdEr. β StdEr. β StdEr. β StdEr. β StdEr. β StdEr.

Intercept 8.263 0.144 8.759 0.084 8.132 0.243 8.451 0.106 8.464 0.078 8.360 0.269
Mother College -0.022 0.032 -0.010 0.011 0.067 0.060 0.029 0.019 -0.014 0.015 0.062 0.060
Mother High School 0.082 0.046 0.004 0.013 -0.004 0.064 0.002 0.026 0.043 0.019 -0.057 0.076
Mother Educ missing 0.124 0.078 0.023 0.030 -0.061 0.143 0.064 0.051 0.056 0.039 0.174 0.158
Father College 0.000 0.033 0.016 0.013 -0.020 0.069 0.017 0.023 0.001 0.016 -0.064 0.056
Father High School -0.020 0.036 0.022 0.012 0.077 0.053 0.013 0.021 -0.004 0.015 0.094 0.081
Father Educ missing -0.088 0.068 0.009 0.026 0.071 0.114 -0.056 0.050 -0.011 0.037 -0.105 0.138
Family Income 0.073 0.017 0.051 0.007 0.078 0.022 0.030 0.013 0.031 0.009 0.034 0.031
School-Ave Fam Income 0.031 0.046 0.034 0.019 0.097 0.069 0.041 0.035 -0.027 0.024 -0.150 0.085
Health Endurance 0.049 0.013 0.023 0.005 0.077 0.025 0.027 0.008 0.022 0.005 0.031 0.026
Health Strength -0.040 0.013 -0.008 0.005 -0.047 0.023 -0.007 0.007 0.004 0.005 0.037 0.025
Health missing -0.109 0.059 -0.009 0.025 -0.099 0.121 -0.021 0.039 -0.046 0.033 0.048 0.105
Took 9th Adv. Math -0.007 0.037 -0.015 0.020 0.023 0.090 0.041 0.023 0.009 0.015 0.065 0.077
Took 9th Adv. English -0.065 0.048 -0.040 0.015 -0.004 0.092 -0.052 0.024 -0.008 0.017 0.261 0.094
HS Academic Track 0.107 0.036 0.010 0.017 0.021 0.075 -0.047 0.021 -0.003 0.016 0.021 0.065
HS STEM Track 0.149 0.045 0.041 0.014 -0.103 0.094 -0.017 0.031 0.026 0.019 -0.001 0.074
Cognitive 0.016 0.014 0.035 0.006 0.104 0.027 0.033 0.011 0.022 0.007 0.035 0.028
Interpersonal 0.098 0.012 0.056 0.005 0.111 0.026 0.061 0.008 0.045 0.005 0.052 0.019
Grit 0.022 0.016 0.041 0.007 0.123 0.030 0.041 0.012 0.024 0.008 0.026 0.028
Type 2 -0.306 0.148 -0.002 0.023
Type 3 -0.186 0.115 0.167 0.077
Type 4 -1.218 0.210 0.046 0.015
Type 5 -0.156 0.064
Type 6 -0.207 0.069
Type 7 -0.140 0.067 -0.260 0.133 0.362 0.079 0.324 0.057
Type 8 -0.120 0.061
1/Precision 0.486 0.012 0.288 0.014 0.439 0.023 0.313 0.012 0.259 0.009 0.467 0.019
N 1426 5192 440 1456 2343 467

Notes: Table reports estimates for the log PV disposable income models. Imprecise loadings on the types cause problems for the simulation. In order
to avoid this, we first estimate the model without constraining the loadings. We then calculate the fraction of college graduates of a certain type that
are expected to graduate in a certain major. The loadings are set to zero in the graduation and outcome models if less than 0.002 of the population is
predicted in that cel. The model is re-estimated pooling the low-probability cells.
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Table F.17: Estimates for Log PV Disposable Income Models III (Outcomes Yms)

Variable Soc Sci Sciences Engineer Medicine Business Law
β StdEr. β StdEr. β StdEr. β StdEr. β StdEr. β StdEr.

Intercept 8.026 0.167 8.620 0.122 8.626 0.082 8.589 0.198 8.132 0.118 7.974 0.163
Mother College -0.020 0.033 -0.026 0.026 -0.009 0.012 0.034 0.037 0.006 0.027 0.051 0.044
Mother High School 0.063 0.062 -0.049 0.035 -0.003 0.019 -0.097 0.067 0.041 0.044 0.136 0.085
Mother Educ missing 0.025 0.124 0.013 0.090 0.028 0.041 -0.043 0.119 -0.133 0.098 0.134 0.135
Father College 0.006 0.036 0.016 0.027 -0.010 0.013 0.064 0.043 0.080 0.033 0.013 0.047
Father High School 0.020 0.052 -0.016 0.031 0.015 0.016 -0.010 0.053 0.056 0.035 0.113 0.078
Father Educ missing -0.038 0.100 -0.085 0.084 -0.007 0.037 0.007 0.105 0.276 0.083 0.141 0.113
Family Income 0.072 0.016 0.041 0.012 0.056 0.006 0.038 0.013 0.096 0.012 0.082 0.019
School-Ave Fam Income 0.099 0.053 -0.016 0.033 0.040 0.016 0.043 0.045 0.100 0.032 0.106 0.042
Health Endurance 0.054 0.017 0.040 0.010 0.034 0.005 0.011 0.011 0.023 0.013 0.043 0.018
Health Strength 0.004 0.017 0.007 0.011 -0.019 0.005 -0.013 0.014 -0.016 0.015 -0.034 0.018
Health missing 0.133 0.070 0.014 0.056 -0.034 0.023 -0.035 0.063 0.004 0.053 0.045 0.094
Took 9th Adv. Math 0.024 0.046 0.130 0.048 0.037 0.038 0.082 0.114 -0.019 0.052 -0.007 0.076
Took 9th Adv. English -0.022 0.061 0.046 0.049 0.050 0.032 -0.012 0.125 -0.013 0.055 0.038 0.096
HS Academic Track 0.082 0.053 0.047 0.038 -0.058 0.031 -0.058 0.083 0.025 0.044 0.020 0.088
HS STEM Track 0.095 0.067 -0.003 0.036 0.057 0.024 0.020 0.080 0.013 0.052 -0.031 0.096
Cognitive 0.021 0.018 -0.008 0.013 0.025 0.007 0.055 0.016 0.110 0.015 0.098 0.020
Interpersonal 0.063 0.014 0.044 0.010 0.061 0.006 0.032 0.011 0.102 0.012 0.086 0.015
Grit 0.012 0.021 0.003 0.014 0.040 0.007 0.088 0.015 0.127 0.016 0.097 0.023
Type 2 0.130 0.043
Type 3 0.708 0.094 0.223 0.072 0.097 0.042 0.640 0.190
Type 5 -0.088 0.144 -0.115 0.050
Type 6 -0.045 0.043 -0.321 0.061
Type 7 -0.059 0.090 -0.716 0.411 0.143 0.381
Type 8 -0.143 0.054
1/Precision 0.396 0.018 0.398 0.012 0.370 0.008 0.290 0.014 0.470 0.020 0.401 0.028
N 831 1632 5542 602 1739 708

Notes: Table reports estimates for the log PV disposable income models. Imprecise loadings on the types cause problems for the simulation. In order
to avoid this, we first estimate the model without constraining the loadings. We then calculate the fraction of college graduates of a certain type that
are expected to graduate in a certain major. The loadings are set to zero in the graduation and outcome models if less than 0.002 of the population is
predicted in that cel. The model is re-estimated pooling the low-probability cells.
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