Complementarities in High School

and College Investments

John Eric Humphries Juanna Schrgter Joensen Gregory F. Veramendi *

June 17, 2025

Abstract.

This paper examines how high school specialization shapes college investment deci-
sions and their subsequent returns through dynamic complementarities. Using Swedish
administrative data, we estimate a dynamic Roy model that accounts for selection on mul-
tidimensional skills, family background, prior investments, and unobserved heterogeneity.
We identify the model using rich skill measures and quasi-experimental variation in pro-
gram popularity. For marginal students, STEM specialization in high school increases
wages by 9%, with more than half this return attributed to dynamic complementarities
that enhance the productivity of subsequent college investments. Consequently, we find
that counterfactual policies encouraging high school STEM specialization generate twice
the returns of equivalent college-level interventions. These findings demonstrate how
the timing of specialized human capital investments matters during adolescence, with
important implications for education policies that encourage or restrict specialization.
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1 Introduction

Students typically begin choosing specialized programs or advanced courses during
adolescence. These early decisions may significantly shape subsequent education choices,
career trajectories, and econonomic outcomes. On one hand, high school specialization
may yield direct labor market benefits, steer students toward higher-return college majors,
or enhance the returns to specific college majors through dynamic complementarities—
where earlier investments increase the productivity of later investments. On the other
hand, dynamic complementarities could reduce returns if high school preparation and
college investments are poorly aligned. This potential trade-off suggests that policies
influencing high school specialization, whether encouraging or restricting it, may have
large impacts on college choices and their labor market returns.! While existing research
has studied how high school graduation opens up access to college (e.g., Cameron and
Heckman, 2001; Altonji et al., 2012; Heckman et al., 2018b), considerably less is known
about how specialization within high school shapes subsequent college investments and
returns.

In this paper, we study how initial endowments and high school specialization com-
plement post-secondary education choices, and how these complementarities then affect
labor market outcomes. To quantify the importance of these complementarities, we de-
velop and estimate a dynamic Roy model that accounts for selection on multi-dimensional
skills, family background, prior investments, and persistent unobservables. We identify
the model using noisy measures of skills combined with quasi-experimental variation at
the high school specialization and college application stages. Using Swedish data, we find
that dynamic complementarities play a large role in the returns to high school specializa-
tion. For example, students who chose to specialize in STEM in high school received a
7.6% increase in wages on average. We estimate that 58% of this effect is due to dynamic
complementarities, while changes in post-secondary choices account for 22%, and direct
returns in the labor market account for 20%. We then show that counterfactual policies
targeting marginal STEM enrollees in high school have larger returns than similar policies
targeting college applicants.

Four aspects of the Swedish institutional setting enable our analysis. First, we ob-

1Such policies are hotly debated. For example, in 2014 the San Francisco school district made the
controversial decision to delay math specialization until tenth grade (Huffaker et al., 2024), restrict-
ing specialization occurring in high school. Similar limits are recommended in the 2023 California Math
Framework. Conversely, districts like Wake County, North Carolina have pursued the opposite approach,
implementing universal access to eighth-grade algebra and expanding pathways to advanced mathematics
(Dougherty et al., 2017). These contrasting approaches reflect broader debates about whether early spe-
cialization enhances or constrains student outcomes, with federal reports (e.g., U.S. President’s Council
of Advisors on Science and Technology, 2012) calling for education reforms to increase the number of
college graduates in Science, Technology, Engineering, and Mathematics (STEM) fields.



serve students choosing high school programs at the end of ninth grade, which determines
what courses they take during high school. This specialization mirrors high school course
choices that are common in the United States and other countries (e.g., Betts, 2011;
Woessmann, 2016; Nomi et al., 2021). Moreover, high school programs can be compared
across schools as they are regulated at the national level. Second, men in our cohorts
completed an enlistment screening for mandatory military service, including cognitive
exams, personal interviews with psychologists, and measures of physical health. Com-
bined with measures of performance from ninth and tenth grade courses, these measures
allow us to identify the latent cognitive, interpersonal, and grit skills of students us-
ing a factor model. Third, we observe detailed information about the academic history
of individuals, including which schools they attend, their college applications, and ad-
missions outcomes. Within-school-across-cohort variation in specialization choices and
variation around college admission thresholds allow us to identify persistent unobserved
heterogeneity. Fourth, we have panel data on college enrollment where we see if they
switch programs and what, if any, degree they complete. We use Swedish registry data
on the population of men born between 1974 and 1976, where we can link comparable
measures of skills, family background, ninth-grade performance, high school choices and
performance, college choice and graduation, and labor market outcomes.

Our paper makes three main contributions. First, we build a dynamic generalized
Roy model to jointly model education decisions (starting in ninth grade through the end
of college) and labor market outcomes. The model includes both specialization decisions
and attainment in high school and college. To capture endogenous sorting on unob-
servables, we include a detailed measurement system for estimating a multidimensional
vector of latent skills. In addition, we include eight latent types that capture residual
correlations between education decisions and outcomes. We also directly model the col-
lege application process, where student applications will depend on both preferences (for
program and institution) and constraints in terms of their admission probabilities; i.e.,
whether they are above or below expected college program thresholds. The model en-
ables us to estimate how a detailed sequence of specialization choices depends on prior
choices, latent skills and types, and how these jointly affect outcomes. We show how our
model approximates a full dynamic model by flexibly estimating choice probabilities and
state transitions conditional on a period’s current state variables and choices, trading
off structural specificity for greater flexibility and a rich set of observed and unobserved
heterogeneity. While this means that we cannot calculate welfare or evaluate certain

counterfactuals, it avoids fully specifying structural elements like the utility function.?

2For example, while we cannot explicitly simulate the dynamic impacts of relaxing borrowing con-
straints (e.g., Caucutt and Lochner, 2020), study aid (e.g., Joensen and Mattana, 2021), or information



Using the estimated model, we verify the basic elements of the generalized Roy model:
self-selection and differential returns to skills. We document rich sorting on multidimen-
sional skills into high school programs, followed by sorting on both skills and high school
track into college majors. These patterns suggest that students may sort based on het-
erogeneous returns that depend on their skills or other unobserved characteristics. We
then show that the returns to skills and high school track differ by final education. For
example, the returns to grit are over twice as large as the returns to interpersonal skills for
those studying Medicine, while the opposite is true for Social Sciences majors. Similarly,
for those who major in Engineering, the returns to an academic STEM specialization in
high school are high relative to non-STEM, while the opposite is true for those who major
in Law. These heterogeneous returns imply that expected relative earnings across degrees
will differ depending on the student. Indeed, when we rank majors by expected earnings
for each student based on their skills, background, and high school investments, we find
that seven different majors are ranked highest across the students in our population.

Second, we calculate treatment effects for the different high school specializations and
find that, on average, the returns to the academic STEM track are high relative to the
academic non-STEM or vocational tracks. However, these average results mask substan-
tial heterogeneity. For example, the treatment effects on the treated (TT) is notably
higher than the treatment effect on the untreated (TUT) for each pairwise comparison:
academic STEM vs non-STEM, academic STEM vs vocational, and academic non-STEM
vs vocational. In fact, for academic non-STEM vs vocational, the TT is large and positive,
while the TUT is negative, meaning that students sort on gains.

High school specialization can impact later labor market outcomes through several
channels. It may yield direct labor market benefits, steer students toward higher-return
college majors, or enhance the returns to specific college majors through dynamic comple-
mentarities. We decompose the treatment effects of high school specialization into these
three components. When considering academic STEM vs non-STEM specializations, we
find that over half of the overall treatment effect comes from dynamic complementarities
(e.g., reaping the higher returns to engineering), with the rest approximately equally
split between direct effects and changes in future education choices. For academic STEM
vs vocational, the treatment effects are larger, largely driven by larger impacts from
changes in later education choices (e.g., becoming an electrical engineer rather than an
electrician). Finally, the relative importance of these three components varies by skill

endowments. When decomposing the treatment effect of academic STEM vs non-STEM,

interventions (e.g., Arcidiacono et al., 2025), we still capture rich heterogeneity in such impacts and
our estimates do not depend on assumptions about individual beliefs about the returns to investments,
knowledge of their graduation probabilities, or the extent to which they face financial or non-financial
constraints.



direct effects are much more important for those with low levels of cognitive skills or
grit, while dynamic complementarities are more important for those with high levels of
skills. Overall, these results highlight the important role of dynamic complementarities
in explaining the impacts of specialization in high school.

Third, we use the model to evaluate two counterfactual policies designed to promote
STEM education at different stages. The first policy encourages those at the margin
for the high school STEM track to pursue it. The second policy incentivizes students
already applying to college to choose STEM programs. Both policies leave all other
choices unconstrained. We find that each policy increases the number of college STEM
enrollees and graduates, but the high school policy creates larger wage gains and benefits
a greater share of those affected. For example, we estimate that those induced into the
academic STEM specialization in high school have 8.6% higher wages and that 71% of
them benefit from higher wages. In contrast, we estimate that the policy encouraging
applying to STEM majors in college increases wages by 2.5% for those who change their
final education due to the policy, and only 54% benefit from higher wages. The high school
policy has larger returns in part because those induced into the STEM track become more
likely to enroll in college and pursue STEM degrees. In addition, the returns to college
STEM degrees are larger for those who took the STEM track in high school. These results
highlight the importance of understanding (1) how students sort through the education
process, (2) how the returns to education investments can vary by skills, and (3) the
dynamic complementarities between earlier and later investments.

Overall, our findings reveal four key insights for education policy. First, we document
substantial dynamic complementarities between high school and college investments, with
complementarities explaining up to half of the total return to high school STEM special-
ization. Second, the magnitude of these complementarities varies systematically with
student skills, being strongest for students with high cognitive skills and grit. Third, the
timing of specialization matters: early STEM investments yield larger returns than en-
couraging STEM at the college application stage for marginal students, primarily because
high school specialization develops the prerequisites needed to succeed in college STEM
majors. Finally, we show that interventions targeting specialization have heterogeneous
effects across the skills distribution, with important implications for both the efficiency

and equity of education policy.

Related literature. Our paper bridges and extends several strands of literature. First,
we build on research examining dynamic complementarities in human capital formation,
which has primarily focused on early childhood but rarely on the adolescent period when

education specialization typically begins. Second, we extend methodological approaches



to education choice by developing a framework with multiple unordered specialization op-
tions at both high school and college levels. Third, we contribute to the literature on high
school specialization by modeling how these early choices create constraints and opportu-
nities for later investments. Fourth, we advance the understanding of what the returns to
college major embody. Throughout these contributions, we highlight the importance of
understanding both the timing and type of specialized investments for developing effective
human capital policy.

Identifying dynamic complementarities is challenging, with most of the literature fo-
cused on young children. The literature has taken three approaches to identification.
The first approach uses panel data on inputs and outcomes to structurally estimate the
technology of skill formation in which inputs are allowed to interact with one another
(e.g., Cunha et al., 2010; Agostinelli and Wiswall, 2016; Attanasio et al., 2020; Aucejo and
James, 2021; Joensen et al., 2022). The second approach leverages quasi-experimental
variation in policies affecting human capital investments at two points early in the life-
cycle (e.g., Malamud et al., 2016; Rossin-Slater and Wiist, 2020), requiring what Almond
and Mazumder (2013) describe as being akin to asking for “lightning to strike twice.” The
third approach uses field experiments with randomization at multiple education stages
in early childhood, preschool, or elementary school (Carneiro et al., 2022; Meghir et al.,
2023; List and Uchida, 2024).

Methodologically, we build on Heckman et al. (2018a,b) who develop a framework to
analyze sequential education choices and their returns.® This approach enables flexible
estimation of a variety of ex post returns to sequences of education investments and how
they depend on both observed and unobserved heterogeneity. We expand their framework
in three key ways. First, while they focus on binary choices at each stage, our model incor-
porates multiple unordered choices at both high school and college levels, capturing the
complex specialization options students face. Second, we explicitly model the constraints
imposed by competitive college admissions, which creates identification challenges similar
to those in the (dynamic) treatment effect literature. Third, we use multiple sources of
exogenous variation to identify unobserved heterogeneity in the unordered choice models.
Together, these extensions allow us to estimate the dynamic complementarities between
high school and college investments on labor market outcomes.

Empirically, we extend the literature on dynamic complementarities into the criti-
cal high school to college transition and explicitly model how earlier investments change
future opportunities and constraints. While dynamic complementarities have been exten-

sively studied during early childhood, we know little about them during adolescence—a

3Also see Cameron and Heckman (2001) for an earlier example and Eisenhauer et al. (2015) for
related methodological discussions.



sensitive period for advanced cognitive skill development (Hoxby, 2021) when students
begin making specialized choices with significant labor market consequences (Altonji
et al., 2012). This period is particularly consequential as adolescence represents a critical
juncture where specialization decisions begin to lock in career trajectories.

Prior work has studied specialization in high school and college separately. At the
high school level, most literature estimating causal effects has focused on binary choices—
analyzing either academic STEM versus non-STEM specialization (Altonji, 1995; Joensen
and Nielsen, 2009; Cortes et al., 2015; Goodman, 2019) or vocational versus general
training (Oosterbeek and Webbink, 2007; Malamud and Pop-Eleches, 2011; Hall, 2012,
2016; Hanushek et al., 2017; Dustmann et al., 2017; Golsteyn and Stenberg, 2017; Zilic,
2018; Bertrand et al., 2021).* Among the papers estimating labor market effects of high
school specialization, Dahl et al. (2023) provides the most closely related evidence. They
estimate the causal effects of different academic high school lines and the vocational track
in Swedish high schools. They focus on the subset of oversubscribed programs and use
a regression discontinuity design to estimate local average treatment effects for students
near admission thresholds. Their estimates align closely with our estimates of average
treatment effects for marginal students, providing external validation to our approach.

At the college level, many papers study the returns to college major. See, for example,
Kirkebgen et al. (2016), or Altonji et al. (2016) and Patnaik et al. (2021) for reviews of

> However, little is known about how the returns to college majors are

this literature.
shaped by previous education investments. Altonji et al. (2012) advocate the importance
of analyzing high school and college choices jointly to get at the importance of the timing
of specific investments. A few papers analyze the importance of high school investments
for college outcomes (Joensen and Nielsen, 2016; Card and Payne, 2021; Belzil and Poinas,
2018; De Groote and Declercq, 2021; Fiala et al., 2022). Related papers study the role of
math and verbal skills for the transition from high school to college (Aucejo and James,
2021; Delaney and Devereux, 2020), mechanical skills for college enrollment (Prada and
Urzta, 2017), and finally, Saltiel (2023) shows the important role of non-cognitive skills
and math self-efficacy for gender differences in college major enrollment, graduation, and
returns. Our paper brings together skills, high school investments, and college invest-
ments into a single framework, helping us better understand dynamic complementarities
and the broader returns to high school investments.

Finally, we also contribute to the large literature on the importance of cognitive and

4See Altonji et al. (2012) for a review of this literature. Golsteyn and Stenberg (2017) also relate
the Swedish military enlistment measures of leadership skills and psychological stability to the choice of
vocational versus academic secondary education and later life earnings.

°In complementary work Rodriguez et al. (2016) and Mourifie et al. (2020) use generalized Roy
models to study the heterogeneous treatment effects of college majors.



non-cognitive skills. See, for example, Lindqvist and Vestman (2011) and Edin et al.
(2022) for the Swedish context and Heckman et al. (2021) for a recent review. We
contribute to this literature by estimating how students sort on multidimensional skills
into high school tracks and college majors, and how these skills interact with education

investments to generate labor market returns.

2 Simple Dynamic Model of Specialized Investments

While high school graduation and college graduation are often treated as binary vari-
ables, both involve additional specialization choices. To fix ideas, we begin by characteriz-
ing the treatment effect of specializing in high school, showing that it can be decomposed
into the direct impact of specialization, the impact of specialization on college choices,
and the dynamic complementarities between high school and college choices. Consider
the model visualized in Figure 1 with two sequential multinomial decisions. Students
first choose to graduate from high school with specialization Dy € {1,..,Sps} or not
(Dps = 0), and then they choose to go to college with specialization D, € {1, ..., Seor}
or not (D, = 0).

Figure 1: Stylized Two-Period Choice Model

High School College

Yshs Scol

Yshso

We define a student’s potential outcome when fixing Dy, = sps and D.y = Sqo as
Ysnsseol - Likewise, we define the potential outcome for D.,, where D" is the poten-
tial college choice when fixing high school specialization Dys = sps. The college choice
may be influenced by what they study in high school either because they develop spe-
cialized human capital, learn about themselves, learn about college specializations, or
their preferences change. Finally, we define a more compact notation using the indi-
cator H = 1(D:" = s) if a student’s final college state is s when their high school

specialization is fixed to sps.



Consider the simplified setting where specialization in high school is between STEM
(Dps = 2) or not STEM (Dps = 1). We can write the individual treatment effect of
specializing in high school STEM (Ds = 2) on outcome Y as

Scol
Ap,(Y)=) Y*H?-Y"H,]

s=0

Scol Scol
= (Y =Y HF + Y YUH[H? - HI]+ Y (Y - Y'*)H?

s=0 s=1
Scol Scol

(Y20 YIO H2+Z Yls YIO H2 +Z YQS Yls H2 (1)

Direct Effect 3 =1 —~ _ _
Changes to College Choice Dyn. Complementarity

where we use the identity H =1 — Y% HJ in the last step.

The first term is the direct effect (i.e., how much high school STEM changes the
potential outcome without a college degree), the second term is the effect from changes
in college choices only (i.e., the change in the non-STEM return to college from switching
college choices), and the third term is the dynamic complementarity (i.e., how much high
school STEM changes the college return). Imagine a policy maker who wishes to restrict
students from specializing in STEM. Even if college choices could be fixed, the costs of
losing the direct effect and the dynamic complementarity with college investments would
remain. An important goal of this paper is to understand the relative importance of these
three components and how they depend on student background and skills.

Estimating dynamic complementarities using standard causal methods is challenging.
Even with (quasi-)random variation at both margins, it is not possible to know if the
compliers at one stage (e.g., high school) are the same as the compliers at later stages
(e.g., college), except under perfect compliance. It is difficult, however, to find a setting
where specialization in high school and college could be assigned with perfect compliance.

Our solution is to use a generalized Roy Model to jointly estimate (i) the conditional
choice probabilities (CCP) for different specializations and (ii) the causal effects of these
specializations. To do this, we impose additional structure in order to estimate (i) and (ii)
for different populations characterized by rich heterogeneity on multidimensional skills,
persistent latent unobservables, and other background characteristics. As we discuss
in Section 4, we use a sequence of education choices combined with multiple sources
quasi-experimental variation to identify latent distributions of skills and other persistent
unobservables. We then invoke conditional independence assumptions, but conditioning

on both a rich set of observable and persistent unobservables.



3 Institutional Setting and Data

In this section, we describe the education environment and other institutional details
of Sweden for the cohorts born in 1974-76, which are the focus of our analysis. Primary
through upper-secondary schooling in Sweden is regulated by the Education Act of 1985.
Swedish children enroll in first grade in the fall of the calendar year in which they turn
seven. After nine years of compulsory schooling, most Swedish students enroll in high
school.” Whereas compulsory schooling is fully comprehensive with very limited choice of
optional courses, there are many high school lines to choose from. Students submit their
high school applications to the Board of Education in their home municipality. If students
want to be considered for multiple high school lines, then they submit a rank-ordered list
of up to six lines. The home municipality is responsible for offering high school lines that
— to as large an extent as possible — align with the preferences of all qualified students.®
If there are more applicants than available seats, then seats are allocated based on ninth-
grade grade point average (GPA).? In this period, high school lines were generally not
selective, and most students are admitted to (96%) and graduate from (92%) the high
school track of their preferred choice.

High school lines are broadly classified into vocational and academic high school pro-
grams. We classify or group the academic high school lines into non-STEM and a STEM
“tracks.” This classification allows for both vertical sorting between academic and vo-
cational tracks, as well as horizontal sorting between STEM and non-STEM within the
academic track. The academic non-STEM track consists of the three lines in business,
social science, and humanities. The academic STEM track consists of two lines in science
and technical studies. All five 3-year academic high school lines comprise an average of 32
hours of instruction time per week. Appendix Table A.3 provides a brief summary of the
mandated distribution of the core curricula in each of these high school lines. There are
large differences in the amount of instruction time devoted to math, science, and other
technical courses. For example, the students in the technical line have 18 hours devoted
to math, science, and technical courses per week, while the students in the academic
non-STEM track only have 2-4 hours per week. Not only do the STEM track students

have more time devoted to math, science, and technical courses, they also have more

6See the Education Act 1985:100 for the complete law text and its changes over time, available in
Riksdagens law archives). Bjorklund et al. (2005) also provides a thorough description of education in
Sweden during this period.

"Meghir and Palme (2005) and Meghir et al. (2018) provide more background and evaluate the
impacts of the Swedish compulsory schooling reform that mandated nine years.

892% of high schools are run by the municipality during our sample period. Stockholm County is
the main exception in which all but two municipalities run a pooled high school admission process.

9We describe high school application and admission in more detail in Appendix A.2. See the Sec-
ondary School regulation 1987:743 and 1992 :394 for the complete details of the process.


http://www.riksdagen.se/sv/dokument-lagar/dokument/svensk-forfattningssamling/skollag-19851100_sfs-1985-1100
https://www.riksdagen.se/sv/dokument-lagar/dokument/svensk-forfattningssamling/gymnasieforordningen-1987743_sfs-1987-743
https://www.riksdagen.se/sv/dokument-lagar/dokument/svensk-forfattningssamling/gymnasieforordning-1992394_sfs-1992-394

advanced courses on these topics. The choice of high school line thus means a substantial
difference in the curriculum and readiness for certain college majors.

High school graduates comprise the pool of potential college applicants. Meeting the
basic requirements for college enrollment requires completing three years of academic high
school or two years of vocational high school followed by a year of college preparatory
courses. College admission is predominantly conditional on high school GPA, but other
factors also affect the admission score, including the Swedish Scholastic Aptitude test
(SweSAT), high school track and course choices, and labor market experience.'® For
example, only academic STEM track graduates have the qualifications to enroll in all 4-
year STEM college majors without additional supplementary courses, and only students
in the science line are directly qualified for all 4-year college majors.

College admission is largely centrally administered. A college application includes a
rank-ordered list of up to 12 college-program choices.'! Selectivity varies greatly across
college majors: the 4-year programs in Medicine, Law, and Humanities are the most
selective. All Medicine and Law college programs require a GPA one standard deviation
above the mean, while all Humanities college programs require a GPA above the mean
to be directly admitted. However, Medicine is also the major that admits most students
(25%) based on other merits: predominantly through personal interviews. The STEM
majors are generally the least selective, while the remaining 4-year programs are mod-
erately selective; the bulk of the college programs require a GPA between the mean and
the mean plus one standard deviation, but there are also many college programs within
each of these majors that admit all qualified applicants.!?

Higher education is tuition-free for all students and largely financed by the central
government. College students are eligible for universal financial aid of which around
one third of the total amount is a grant (or scholarship) and the remaining two thirds
are provided as a loan. Student aid is largely independent of parental resources but
means-tested on student income, and the maximum eligibility period is 240 weeks (the
equivalent of 12 semesters or six enrollment years). Student loans are subsidized, and the

loan repayment plan was income-contingent for those in our sample.?

190ckert (2010) describes the college admission process for the earlier cohorts, while Altmejd (2018)
describes it for the later cohorts. The SweSAT has become a more important factor over time, particularly
after 1991, and it was the key factor for admission for more than a third of our sample. All the details
can be found in the Higher Education Act 1992:1434 and the Higher Education Ordinance 1993:100.

1Tn this respect, the college application in Sweden is similar to, for example, Norway (Kirkebgen
et al., 2016), Denmark (Humlum et al., 2017; Heinesen et al., 2022), Chile (Hastings et al., 2013; Bordon
and Fu, 2015). Altmejd et al. (2021) directly compare college application in Sweden to Croatia, Chile,
and the United States.

12We provide more descriptives and details in Appendix A.3.

13The students in our sample are enrolled in college during the pre-2001-reform study aid regime as
detailed in Joensen and Mattana (2021).
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http://www.riksdagen.se/sv/dokument-lagar/dokument/svensk-forfattningssamling/hogskolelag-19921434_sfs-1992-1434
http://www.riksdagen.se/sv/dokument-lagar/dokument/svensk-forfattningssamling/hogskoleforordning-1993100_sfs-1993-100

3.1 Data

We merge several administrative registers via a unique individual identifier for the
population of Swedes born in 1974-76. Our measurements of health, skills, and family
background come from the Military Enlistment archives administered by the Swedish
Defence Recruitment Agency (Rekryteringsmyndigheten), the Swedish National Archives
(Riksarkivet), and several registers administered by Statistics Sweden (SCB).

The Military Enlistment archives contain cognitive test scores, psychological assess-
ments, and health and physical fitness measures collected during the entrance assessment
at the Armed Forces” Enrollment Board. The enlistment was mandatory for all Swedish
males at age 18 until 2010, thus for all males in our sample who are Swedish citizens.
The entrance assessment spans two days. Each conscript is interviewed by a certified
psychologist with the aim of assessing the conscript’s ability to fulfill the psychological
requirements of serving in the Swedish defense, ultimately in armed combat. The set
of personal characteristics that give a high score include persistence, social skills, and
emotional stability (Lindqvist and Vestman, 2011).

To validate our interpretation of the latent skill factors, we merge these registers to
the Evaluation Through Follow-up (ETF) surveys administered to third, sixth, and tenth
grade students by the Department of Education and Special Education at Gothenburg
University.'* We use the survey of a random sample of the 1972 cohort, which includes
extensive measures of aptitude and achievement tests, absenteeism, special education and
tuition, and grades in various courses through compulsory schooling, as well as extensive
student and parent surveys related to student achievement, confidence, inputs, grit, and
interpersonal skills.

We also have detailed data on education choices and outcomes from the Ninth Grade
registry (incl. grades in math and English courses, whether advanced math and English
courses were selected, and GPA), the High School registry (incl. grades in individual
courses, GPA| track and specialization choices), and the Higher Education registry (incl.
detailed education codes for all enrollment spells, course credits accumulated during en-
rollment, and acquired degrees). We classify high school students into three tracks: vo-
cational, academic (non-STEM), and academic STEM. As discussed in the prior section,
college applicants are screened based on their high school course choices and GPA. Some
of them are also admitted based on high performance in the SweSAT on which we have
overall test scores and sub-scores on every attempt through the Department of Applied
Educational Science at Umea University. We have access to the complete histories of

college applications and admissions from 1993 onwards through the Swedish National

MHirngvist (1998) provides additional details on the construction of the survey.
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Archives. These include the complete set of admission scores in each admission group, as
we basically observe the complete data from the college admission process.

From the Higher Education registry, we observe the level and field of every college
enrollment spell and degree. We classify all academic programs into two levels (< 3
years; > 4 years) according to the SUN2000Niva code and nine fields (1. Education;
2. Humanities and Art; 3. Social Sciences and Services; 4. Math, Natural, Life and
Computer Sciences; 5. Engineering and Technical Sciences; 6. Medicine; 7. Health
Sciences, Health and Social Care; 8. Business; 9. Law) according to the SUN2000Inr
code. The Swedish education nomenclature (SUN2000) codes build on the International
Standard Classification of Education (ISCED97), and we group programs into majors
according to the first digit of the SUN2000Inr code. We single out Business and Law
from the Social Sciences major and Medicine from the Health Sciences major to better
compare to previous literature. Some of the 3-year programs have few students, so we
group them into STEM (Science, Math, Engineering) and non-STEM (Humanities, Social
Science) majors. Students in the 3- and 4-year Education and Health Sciences majors
(excluding medicine) look similar on observables and labor market outcomes, so these are
grouped together.'

The Multigeneration registry allows us to link children to their parents and back-
ground variables from the longitudinal integration database for health insurance and
labor market studies (LISA) from which we have yearly observations during the period
1990-2013. This allows us to observe individual income until they are 37-39 years old, as
well as parental background variables (including highest completed education and dispos-
able family income). We supplement this with information on disposable family income
from IoT for the years 1978-89 so that we can control for average disposable family

income in the mother’s household at ages 5-18.

3.1.1 Sample Selection

We focus on males born in 1974-1976. We restrict to males since military enlistment at
age 18 was only mandatory for Swedish males, and these scores are important measures of
latent skills. We choose the 1974-1976 birth cohorts for two reasons. Our sample begins
with the 1974 birth-year cohort because the detailed college credit data only exists from
1993 onwards and this is also the year the classification of higher education in Sweden
changed considerably. Our sample ends with the 1976 birth-year cohort because the

cognitive scores from the military enlistment were significantly changed in July 1994.

15 Appendix A.3 provides more details and descriptives by college major.
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3.2 Measuring Multidimensional Skills

We identify latent skills using evaluations done as part of the compulsory military
enlistment and course grades in compulsory and the first year of high school. Let the
measurement system, M, denote a vector of measures or proxies of skills. Students may
be evaluated after they have been exposed to different types and levels of education. Let
M,,s denote the mth measure evaluated at schooling state s. We define Mms as latent

variables that map into observed measures M,,:

B Mms if M,,, is continuous
" 1(Mm5 >0) if M, is a binary outcome.

The latent variables are assumed to be separable in observables, latent skills, and an

idiosyncratic error term:
Mms = Qs +ﬁr]\r{X +A%9+Um,

where a,,, represents schooling-state specific intercepts for measure m, X is a vector of
observables, @ is a vector of latent skills, and wu,, is the error term. We assume that wu,,
are mutually independent across each m and are independent of @, X, and the error
terms in schooling decisions and labor market outcomes.

Our specification accounts for two potential biases in the measures. First, we include
observables (X) in the measurement system to account for biases in the evaluations that
are due to the student’s background.'® Hence, when we report deciles of latent skills, we
are measuring “residual” latent skills.!” Second, some of the measures are determined
after students have partially completed some specializations (Hansen et al., 2004). For
example, students are evaluated by the military at age 18 when their performance might
be affected by their high school specialization. The inclusion of «,,s in the measurement
system implies that our latent skills are measured relative to the skills of students in
ninth grade (s = 0). In Appendix Section B.1, we show that the effect of schooling at
the time of the test (au,s) is separately identified from differences in how students sort

across schooling states. The key assumption is that we have as many pre-specialization

16See e.g. Neal and Johnson (1996) and Winship and Korenman (1997).

170One can think of the residual latent factors as projections of the latent factors onto the orthogo-
nal component of the student characteristics, and then the Frisch-Waugh-Lovell theorem should apply
(approximately).
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measures as factors. 18

The relationship between the individual measures and the three factors is summarized
in the left panel of Table 1. In order to facilitate interpretation of the factors, we specify a
triangular measurement system with orthogonal factors.!” Appendix Section B provides
more details about the measures and estimation. The estimates of the measurement
system are described in Appendix Section F.

To interpret and label the three skill factors, we validate them using an independent
survey administered to a random subset of students in third and sixth grade. We estimate
the relationship between the three factors and over 250 survey questions and instruments,
ranking each item by the fraction of variance explained by each factor. The right panel of
Table 1 shows the top five survey items for each factor. The first factor loads most heavily
on test scores and grades (ten of the top twenty items), which we label “Cognitive Skill”.
The second factor predicts items related to sports, public speaking comfort, and social in-
teractions, which we label “Interpersonal Skill”. The third factor best predicts academic
persistence and students’ feelings about school performance, which we label “Grit Skills”.
While these labels facilitate interpretation, the factors could reasonably be labeled dif-
ferently. For example, the third factor might represent perseverance, conscientiousness,

self-regulation, or motivation.?’

18Since pre-specialization measures are not affected by future investments, the conditional means of
the pre-specialization measures are informative of how students sort into different schooling paths. Any
additional difference in later measures by, for example, STEM vs vocational education, must be due to
the different types of skills learned in those programs beyond the skills of the students in ninth grade.

19 A triangular measurement system is one in which the measures are partitioned into groups based
on how they depend on the factors and, by design, the factors are orthogonal.

20Heckman et al. (2021) synthesize recent research on skill measurement and provide more context
on these concepts.
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Table 1: Structure of Measurement System and Interpretation of Factors

Panel A: Measures 0, 0 03 Panel B: UGU Survey Items
Enlistment Registers f1: “Cognitive Skills”
4 Cognitive Test Scores:® x Test Scores (10 of top 20)

Leadership Evaluation®®  x Spend time doing a hobby (-)
Leadership Skills® X X Ask the teacher for help more often?
Emotional Stabilityb X X How often read newspapers and comics?

Like to understand more of what you read?

9th Grade Registers fy: “Interpersonal Skills”
Math Grades®
English Grades®
Swedish Grades!
Sports Grades/
Residual GPAY

Bad at sports and physical exercise? (-)

How you feel about talking to the whole class?
How often do you do sports?

Participated in any form of childcare

ST T R
I T A
I T B

Often spend time on own during breaks? (-)

10th Grade Registers f3: “Grit Skills”
Math Grades® X X X Think that you do well in school?
Sports Grades? Do your best even when tasks are boring?
Residual GPA® X X X How often do school work at home?
How do you feel about drawing and painting? (-)

™
"
"

Have to learn lots of pointless stuff in school? (-)

Notes: ¢ Binary discrete choice models. ° Ninth grade advanced course indicators and high school track
indicators are included. ¢ Advanced course indicators included. ¢ Math, English, Swedish and Sports grades are

included in the Ninth grade residual gpa model. © Tenth grade math and sports grades are included. ¥ These
measures do not include any schooling-state specific intercepts. (-) indicates that the factor is negatively related
to these items.

4 Empirical Model and Estimation Strategy

This section lays out our empirical model. To begin, we show how our model approx-
imates a full dynamic model by flexibly estimating choice probabilities and state transi-
tions conditional on a period’s current state variables and choices, trading off structural
specificity for greater flexibility and a rich set of observed and unobserved heterogeneity.
Next, we describe our empirical model of the Swedish education setting. In particular,
we explain how we take into account the college application process. Finally, we discuss

our estimation strategy and model fit.

4.1 Owur Modeling Approach

We start with the general education choice model that corresponds to the underlying
dynamic discrete choice problem of students. Consider the model, where each period

from ¢t = 0 to t = T students have a set of observed state variables A;, and make a
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decision Dy € K; = {1, ..., N;}. In period t students observe state variables A; and make
decisions to maximize expected utility, where U is the student’s utility function and (3 is
the discount factor. The student’s dynamic programming problem can then be written

as:

V(A,) = max (U(Dt,At) L8 / V(A )dF (A | Dt,At]) |

DieKy

We assume that the state variable A; = {X;, &, €}, where X, are state variables
observed by the econometrician including the history past choices, & is a set of persistent
state variables known by the student but unobserved by the econometrician, and €, are
transient shocks observed by the student at time ¢, but not observed by the researcher.?!
Finally, students may also have some observable outcomes each period that directly enter
the utility function or may be of interest to policy makers, such as earnings, given by
Yy =Yi( Xy, &, m0).

We make two main assumptions that are common in the dynamic discrete choice lit-
erature, particularly in the literature which uses conditional choice probability (CCP)
methods such as Hotz and Miller (1993) and Arcidiacono and Miller (2011). First,
we assume that the unobservable shocks are i.i.d. over time and across students with
distribution G.. Second, we assume that the transition of state variables depend on
decisions and the state variables from the previous period, but not the shocks from
the previous period (i.e., Fy [Xi1 | Dy, X, &, €] = Fp [ X1 | Dy, Xy, €]). These two as-
sumptions together give us Rust’s conditional independence assumptions as discussed in
Rust (1994) and reviewed in Aguirregabiria and Mira (2010). Given these assumptions,
F[Xt+17€t+1 | Dt,XuGtaE] = I [Xt+1 ’ Dt,Xt,E] Ge(€t+1)-

Under the assumptions above, the choice-specific value function can be written as

v(D, A)) = U(Dy, Ay) + / / V(Ar)dGe(er)dF, [Xosr | Dr, X, €]

= U(Dta At) + B/V(At—l—l)sz [Xt—H | Dt? Xt7 E] ’

where V(A1) = J V(As11)dG(€+1) is the integrated value function. We can now write

the probability than an individual chooses action D; = k in period t as

P(D; = k| X, €) = / 1 {arg max[vy(Dy, X1, €) + e(Dy)] = k} dG.(€,).

Dieky

As noted in Benkard et al. (2018), many economically relevant counterfactuals can be
estimated through simulation without explicitly solving the dynamic program or taking

21For simplicity, here we use £ for all persistent latent state variables unobserved by the econometri-
cian, while later we break this into latent skills @ and latent types v (i.e. £ = {0, v}).
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a stand on the functional form of the utility function. In particular, the joint probability

of a given set of states and set of actions can be written as:

P (Do, (D1, X1), ..., (D1, X71) | X0,€) = (2)
P(Dr | & X7)Fx [ X1 | Dr—1,&, X7_1]...P(D1 | &, X1)Fx [ X1 | Do, &, Xo] P(Dy | &€, Xo).

Under the assumptions of the model, each of these components can be estimated non-
parametrically from the data, giving estimates of P(D;|€, X;) and Fx [ X; | Di—1,&, X;-1]
for all combinations of choices and state variables. Using these estimated choice prob-
abilities, it is then possible to estimate how fixing a particular choice at time ¢ affects

decisions at time t 4+ 7.22 For example, consider a student with X, at time ¢, then

P(Dr | & Xr)Fx [Xr|Dr1,&, X 1] .. P(Deyr | €, Xo1) Fx [ X1 (D = 1) | €, X
—P(Dr | & X7)Fx [ X7|Dr-1,&§ Xr1] . P(Dyy1 | &, Xi1) Fx [ X1 (Dy = 0) | §, X

gives the change in the joint probability of observing the realization { (D11, X¢41), .-, (D1, X1)}
counterfactually fixing choice D; from 0 to 1. In Appendix Section D.1.1, we show how
fixing a particular choice at time t affects outcomes Y;.

Using this setup, it is possible to simulate how fixing a choice at a particular time
period will affect expected future choices and outcomes for different populations. We can
then calculate various dynamic treatment effects of choices at time ¢ on future choices
and outcomes while imposing a subset of the assumptions necessary for conditional choice
probability estimation of fully-specified dynamic discrete choice models. In particular, it
requires we correctly estimate the conditional choice probabilities given in equation (2),
the conditional expected value of the outcomes of interest, the distribution of persistent
latent state variables (F¢(£)), and place some restrictions on the dependence between
error terms in the choice equation and outcomes. However, our approach does not re-
quire us to specify the student’s utility function to estimate dynamic treatment effects of
interest. Moreover, estimating the dynamic treatment effects does not require us to solve
the dynamic model.

A cost of this approach is that we are not able to calculate welfare nor consider policies
that do not directly modify the observed state vector X;. For example, we can consider
policies that modify schooling decisions, but not policies that offer a large scholarship for
studying a STEM major.?

22We follow Heckman and Pinto (2015) in using parentheses when fizing a variable (e.g.
Fx [X:41(Dy = 1) | €, X)) rather than conditioning on it (e.g. Fx [X¢11|Dt, &, X¢]). We use super-
scripts to denote fixing choices in the simpler model of Section 2, as there are only two choices.

23 Another limitation that applies to our approach, and all CCP approaches, is that the state variables
must be sufficiently rich to capture the future changes of interest. For example, future expected wages
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4.2 Empirical Model of Education and Earnings

This section discusses how we map the conceptual model described in Section 4.1 to
our institutional setting. Note that in the empirical model, we replace time subscripts ¢
with the stages of education subscripts j. Figure 2 provides an overview of the sequence of
educational decisions we include in our sequential Roy model. Ninth-grade students make
two binary decisions whether or not to enroll in the advanced math (D19 = 1) or advanced
English (D13 = 1) courses at the ninth grade decision nodes (Dyy,). Upon enrolling in
high school, students make a multinomial choice of high school track (Ds(Ks)). Let
ke € Ko = {0,1,2,3} denote high school dropout, vocational track graduate, academic
non-STEM track graduate, and academic STEM track graduate, respectively. High school
graduates make two sequential binary choices: to apply to college (Ds,) and then whether
to take the Swedish SAT (Ds;), which was optional for college applications. Next, students
make a series of 12 multinomial choices of which major-college programs they want to list
on their application (Ds.). The college application is modelled using the exploded-nested-
logit model described in the next section. The central admissions system determines the
first program that is above the threshold and the student is admitted to that program.
Finally, the student makes one additional binary choice on whether to enroll in the first
program to which they are admitted (Dsgq). Let ks € K3 = {0,1,..., Nfieia} denote the
field of study and type of degree, where k3 = 0 denotes no enrollment in college. Let
D3(K3) summarize the initial enrollment after the application process.

Once enrolled in college, students make another multinomial choice to switch field,
D4(K4).?* This is important as many students switch major after the initial enrollment.
Let ky € Ky = {1, ..., Nyie1a} denote the final field of study and type of degree. Finally,
enrolled students make a binary decision whether to graduate or not in their final field of
study and type of degree (Dsy, ), where ks = ky € Ky4. Let j € J denote the decision node
in the education model and s € S denote the final schooling level (high school, college
dropout or college graduate).

If students do not enroll in college (D3(K3) = 0), they enter the high school labor
market and earn Yig,. If they enroll in college (D3(K3) > 0), but do not graduate
(Dsg, = 0), they enter the labor market for college drop outs and earn Ya,, otherwise
they enter the labor market for college graduates and earn Yji,, where ks = Dy (KCy).

The choices of high school track and final enrollment are characterized by the max-

from a given choice need to depend on the state variables included. Therefore, the model may not be
well-suited for some counterfactuals.

24 Allowing for switching and dropout is key because of the importance of information revelation and
learning about skills after initial college enrollment (Altonji, 1993; Arcidiacono, 2004; Stinebrickner and
Stinebrickner, 2012, 2013; Wiswall and Zafar, 2015; Arcidiacono et al., 2025).
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Figure 2: Sequential Model of Education Specialization Choice and Earnings

Apply to Take Rank Enroll
College SweSAT  Programs Admissions College
Qa_a Dy, Ds, D34
\ e O & O © |
Choose Graduate Y Choose
9t Grade  High School Enroll Final Graduate
Courses Track College Major College
Dy D, D, [ 12 Labor Markets:

. . College Graduates
(Yom)

4 Labor Markets: 2 Labor Markets:
High School (Y;,) College Dropout (Y;,,)

(a) Model Diagram

F(V) A]\Jms lel DQ GPA & SAT D3u73d D4 D51€5 Yms

Skills (0) X X X X X X X X X
Observables (X) X X X X X X x X
Types (v) X X X X X X X
Ninth-grade Adv.courses (D) x X X X x X
High School Track (Ds) X X X X X
Instruments (Z) x X

High School GPA & SweSAT X X

Initial Enrollment (Ds) X

(b) Structure of Models

Notes: Panel (a) shows a diagram of the sequential choice model used in this paper and panel (b) shows how
each model depends on various elements of the state space, including previous choices. Observables include
indicators for high school or college degree of each parent, average disposable family income child age 5-18,
strength measure, fitness measure, and average family income of students at the grade school they attended.
Within-School-Across-Cohort instruments (Z) are included for high school track choices (D3) relative to ninth
grade cohort choices and college application choices (Ds.) relative to the high school track cohort choices.
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imization of a latent variable I;;, where individual 7 subscripts are suppressed. Let I}
represent the perceived value associated with the choice of high school track (j = 2), or
final degree type and field (j = 4). The conditional choice probability for choice k; is
then

Pr(D; =kj) = /1 {arggnax{ ik} = } (€;) for  je{2,4}
J

where D;(-) denotes the individual’s multinomial choice. The perceived value for each

choice is a function of observable state variable (X jk].) including previous choices, choice-

specific instruments that do not enter the outcome models (ijj), a finite dimensional

vector of unobserved skills 6, a finite dimensional vector of unobserved types v, and an

idiosyncratic error term €, which is unobserved by the econometrician:
I ki = /BjEijjkj +'ij:ijkj -+ )\ﬁje -+ OéjEk’U —+ Ejkj for kj € ICJ' and j € {1, ,5}

See Figure 2b for details about how previous choices and instruments enter each decision

node.

4.2.1 College Application Model

In this section, we introduce a model of ordinal rankings of major-college choices.
Swedish students submit ranked lists of up to twelve major-college choice pairs, where
there are hundreds of potential alternatives in each year. The student with the highest
admissions score is admitted to their first choice, and the student with the next highest
score is admitted to their first choice if there is still space, otherwise they are admitted
to their next ranked choice. For our cohorts, admissions scores are determined primarily
by each student’s high school GPA. Let I;; be student ¢’s perceived value of major-college
pair [. Students choose their ranked ordered list by solving the maximization problems:

Dl

3c,i

(L;) = argmax{l;},
leL}

Dgcz(‘C ) = arg max{]zl}
where Décz(ﬁ) denotes individual i’s jth ranked choice given their choice set £ (i.e.

L} =L, L7 =L\ Dy, ;L;), etc). We allow the choice set to vary by individual as some
competitive choices may have an ex ante zero probability of admission given a student’s

admission score.?®

25 Artemov et al. (2020) show that students do not rank certain alternatives even if they strictly
dominate other choices, because they do not expect to be admitted. Fack et al. (2019) discuss how to
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We describe the student’s problem as an exploded mixed nested logit model, where
we group major-college pairs into major groups or nests, k3 € K3. The latent utility of

major-college alternative [ € L(k3) for student i is then
I = fr,(Xiz, Z;,0;,05) + 6 + €,

where fi, (X3, Z;, 0;,v;) depends only on variables that describe nest k3. These variables
differ over nests but not over alternatives within each nest. The within-nest utility of
major-college pair [ for a student is d;;, which captures differences in college and ma-
jor characteristics (expected income, utility of major/college, etc) within a nest. The
alternative-specific utility d; may also represent location-dependent and student-specific
preferences.

Three main assumptions are needed for an identification strategy that is tractable for

estimation:

A1 : Utility of a major-college pair within a nest depends on geographic region, applica-
tion scores (i.e. GPA and SweSAT scores), and qualifications (i.e. high school track)
used for admissions. Let g; denote a geographic region x GPA x SweSAT score x
high school track bin. The within-nest utility of major-college pair | depends only
on the bin g;:%

o = 61(gi).

A2 : Anindividual’s consideration set in nest k3, denoted B;,, only depends on whether
the application scores (i.e. GPA and SweSAT scores) are above or below the ex-

pected admissions threshold:?”

Bik3 = Bk3 (GPA“ S?.UQSAE)

A3 : The error terms, ¢;, are distributed type-I generalized extreme value.

Proposition 1 Under assumptions A1-A3, fr,(Xis, Z;, 0;,v;) is identified by estimating

the conditional choice probabilities of the outer nest with correction terms that depend only

estimate preferences when truth-telling is only a weakly dominant strategy.

26 Appendix Figure A.2 shows the 15 geographic regions we use along with the locations of the uni-
versities. Appendix Figure C.2 shows an example of geographic preferences for engineering programs of
students who live in two different regions.

2TFollowing the approach of Kirkebgen et al. (2016), Appendix Figure C.2 shows that there is a large
increase in admissions when just crossing the GPA admissions threshold for a focal major. Appendix
Table C.2 shows large jumps at both the GPA and SweSAT thresholds when modeled jointly.
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on the share of applications going to each program within bin g;:

In (P [D}

3c,2

€ Bi(GPA;, SweSAT;)| Dy, ; € By, gi]) -

3c,t

See Appendiz Section D.1.2 for the proof.

4.2.2 Labor Market Outcomes

We model schooling-specific labor market outcomes which similarly depend on back-
ground characteristics, the individual’s vector of unobserved skills, and a vector of latent
types that affects education decisions and outcomes. Labor market outcome m of indi-

vidual ¢ with final education s is given by:%®
Yism = z/szs + Agfmez + aZmUz‘ + Nism; (3)

where X, includes indicators for ninth grade specializations and, if they enrolled in
college, high-school specialization choices. See Figure 2 for a description how previous

choices enter each model.

4.3 Estimation Strategy

We now turn to how we estimate the model of sequential education choices and their

relationship with labor market outcomes as specified in the previous section.

4.3.1 Exclusion Restrictions

Our identification strategy relies on exclusion restrictions in high school and col-
lege application decisions that identify the distribution of unobserved heterogeneity (Sec-
tion 4.3.2). We exploit variation in program popularity across cohorts within schools,
which we attribute to differential recruitment efforts. High school and college recruiters
visit schools annually to promote their programs, and particularly charismatic (or un-
charismatic) recruiters can make programs more (or less) attractive to entire cohorts.

Following the peer-effects literature, we construct within-school-across-cohort (WSAC)
instruments for ninth grade advanced course choice, high school track, and college field

applications.? Let Pf’zicp represent the proportion of student i’s classmates in cohort ¢

28The 18 final schooling states are 4-year college graduates in eight major groups, college graduates in
4 short (2-3 year) major groups, college dropouts from 4-year and short programs, high school graduates
from the three tracks, and high school dropouts. See Section 3.1 for more details on education categories.

290riginally proposed in Hoxby (2000), see Cattan et al. (2023) for a recent example studying the
effect of classmates with elite parents.
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and school program p who make choice D; = k;. For example, for each STEM track high
school student, we calculate the fraction of their classmates (within school-cohort-track)
who list engineering as their first college choice. We estimate the following model for
each choice D; = k;:

Wiep(ks) = B1PY,, + X,

icp

By Ak ok ohic i, (4)

where Wi, (k;) indicates whether student ¢ makes choice k;j, vfj are cohort fixed effects,
o/;j are school-program fixed effects, and 6? c capture program-specific time trends.*"

Validating the Exclusion Restrictions. Appendix Table C.1 shows our estimates of
(1 for high school track and college application choices. This may be due to an aggregate
shock, like a particularly effective recruiter coming to the school, or because a popular
student in the cohort chooses a program. Column (1) of Table C.1 shows that classmates’
choices strongly predict individual choices. While we do not need to identify peer effects
per se, there are mechanisms that may change the choices of classmates that violate the
exclusion restriction. For example, the exclusion restriction could be violated if cohort
composition affects student skills or if a new teacher influences both cohort skills and
choices. We test for such violations in two ways: First, in column (2) we control for indi-
vidual skills using ninth-grade GPA (for high school choices) or military enlistment scores
(for college choices). The instrument’s predictive power remains unchanged, suggesting
individual skill differences do not drive the results. Second, in column (3) we control
for cohort average skill using the same measures. Again, the instrument coefficient re-
mains stable or increases, indicating that cohort-level skill variation does not explain the
relevance of the instrument. These robustness checks support our interpretation that
WSAC variation captures recruitment-driven popularity shocks rather than skill-related

confounds, validating our exclusion restriction.

4.3.2 Identification of Unobserved Heterogeneity (Types)

While we account for a rich set of observables, latent skills, and past education choices,
there may be unobserved confounders that drive both education choices and outcomes.
As discussed above, we model these potential confounders through the inclusion of latent
types. The instruments shift similar individuals to different specializations in high school
and college, allowing us to identify the role of unobserved types in education choices and

adult earnings.

30We residualize P_Jicp

model (Section 4.2): P = X! ng 8+ o/;j + 5],?0 +e

—icp icp

to construct instruments Z;” for the perceived value of choice k; in our decision
k;

kj ok .
iop* We use Zij = €jop S instruments.
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For example, consider an individual ¢ who takes an academic STEM track in high
school, majors in engineering in college, and earns a high income as an adult. A similar
individual in the same school i might find themselves in a ninth grade cohort where
the instrument shifts them to an academic non-STEM track. If individual i' goes on to
major in engineering and earn a similar income as individual ¢, then we know that the
preference for engineering and possibly other unobservables drive the strong correlation
between high school track and major choice (i.e. the type will be important) rather
than the high school track changing preferences and perceived values. Now imagine a
different pair of similar individuals applying to college. Changes in the college major due
to instrument variation will be informative about whether the college major has a causal
effect on earnings. Furthermore, comparisons can be made between individuals who are
shifted from major k to k" and individuals who are shifted from &’ to k. Differences in the
change in earnings identifies comparative advantage due to the unobserved heterogeneity.
In this way, identifying unobserved types from the exclusion restrictions is a key element

of our identification strategy.

4.3.3 Estimation and Model Fit

The model is estimated via maximum likelihood, as described in Appendix D.2. Ap-
pendix F presents the estimated parameters of the model and Appendix D.3 documents
that the model accurately predicts the patterns in the data. Treatment effects and coun-
terfactuals are then estimated through simulation. Standard errors and confidence in-
tervals are constructed via bootstrap, where the model is re-estimated and simulated for
501 bootstrap samples.

We estimate the model with eight types.?! Appendix D.4 shows how the types strongly
sort into high school tracks and college majors. Figure D.2 shows how each type sorts into
only a few majors, playing an important role in explaining the persistence of programs
within a college application. Types 5, 6, and 8 sort mostly into the STEM majors, while
Types 1, 3, and 7 are students studying social science, business, and law. Combining
Figure D.2 with the model estimates in Tables F.13 and F.14, we find important sorting on
gains by type, capturing an important source of unobserved heterogeneity. For example,
Type 5 has a large comparative advantage (about 0.2 log points) in wages as an engineer
or science graduate compared to other types. Likewise, Type 2 earns more as a doctor and
Type 4 has an advantage as a teacher. We interpret the types as partially representing
occupational preferences of students, but likely they also capture motivation and other

unobserved skills.

31Adding a ninth type to the model did not significantly improve the fit or change the results, but
substantially increased the computational burden.
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5 Results

In this section, we use the estimated model to study the complementarities between
skills, high school track, and post-secondary education decisions. First, we provide evi-
dence on how individuals sort into high school track and final education based on their
background, skills, and latent types. Second, we calculate treatment effects of high
school tracks, highlighting important heterogeneous effects and quantifying selection on
gains. Third, we provide direct evidence of dynamic complementarities by decomposing
treatment effects into a direct effect, changes in college choices, and dynamic complemen-
tarities between high school and college choices. Lastly, we use the model to simulate
two counterfactual policies designed to promote STEM education at different points in

the educational trajectory.

5.1 Sorting and Heterogeneous Returns

The goal of this section is to highlight the rich heterogeneity in family background
and skills that we observe across students and how this heterogeneity is meaningful for

high school choices, college choices, and earnings.

Determinants of High School and College Choices Table 2 characterizes how
individuals sort into high school tracks and final education. Even in “egalitarian” Sweden
we find stark differences in background in both educational attainment and sorting into
specializations. For high school track, we see that those who drop out have the lowest
family income as a child, are the most likely to have a parent who dropped out of high
school (55%), and are least likely to have a parent who graduated from college (16%).
Those in the vocational track had somewhat higher family income, were less likely to
have parents who dropped out of high school, and were more likely to have a parent who
graduated from college. This pattern continues as we move from the vocational track to
the academic non-STEM track, and from the academic non-STEM track to the academic
STEM track. We also find the same sorting pattern on skills. High school