
Econ 21410 - Problem Set III
Marriage Matching∗

April 21, 2014

This homework should be done in LaTeX The homework will be graded on correctness, but will
also heavily weight clarity and professionalism. Its better to not do some of the harder parts
than to turn in an incomprehensible document. Your R script as well as a log-file should be
submitted. Alternatively, use knitr to print your code inline in your latex document.

SUBMISSION: The homework must be emailed to Oliver and myself by 2p.m. Monday, April
the 21st. The email must include a pdf with the filename lastname pset2.pdf and R code called
lastname pset2 code.R where ”lastname” should be replaced with your last name. The subject
of your email should be [ECON 21410: pset3 submission]

If you are struggling, please use the github page to ask for help!* Remember that asking and
answering questions on our github page, coming to office hours to ask questions, and contributing
to the class wiki are all worth participation credit, which is 10% of your grade in this class.

Becker’s Marriage Market Warm Up

1. Suppose the output of a marriage is determined by the function h(mi, fj), where mi and
fi are the amount of skill man i and woman j bring to the marriage respectively. For each
of the functions below, answer if the function will lead to positive assortitive matching in
(1) the transferrable utility case and (2) the non-transferrable utility case.

• Transferable Utility: Becker (1974) showed that under transferable utility there will
be transfers in equilbrium such that the sum of all individuals utility is maximized.

This will imply assortative matching if ∂2h(m,f)
∂m∂f > 0 since in this the difference in

productivity between a high type male and a low type male will be larger when

matched with a high type female than a low type. If ∂2h(m,f
∂m∂f < 0 then non-assortative

matching is optimal.

• Non-Transferable Utility: In the non transferable case we assume that the two partners
split the total utility by some pre-specified shares α and 1− α. Now the person each
individual wants to marry will depend on the sign of the partial derivatives. If

2. Suppose the output of a marriage is determined by the function h(mi, fj), where mi and
fi are the amount of skill man i and woman j bring to the marriage respectively. For each
of the functions below, answer if the function will lead to positive assortitive matching in
(1) the transferable utility case and (2) the non-transferable utility case.

∗Please email johneric@uchicago.edu and obrowne@uchicago.edu if you have questions.
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• h(m, f) = m0.3f0.3

– Transferable Utility:Positive Sorting

– Non-Transferable Utility: Positive Sorting

• h(m, f) = (m+ f)2

– Transferable Utility: Positive Sorting

– Non-Transferable Utility: Positive Sorting

• h(m, f) = (m+ f)0.5

– Transferable Utility: Negative Sorting

– Non-Transferable Utility: Positive Sorting

• h(m, f) = m+ f

– Transferable Utility: Any sorting pattern optimal since in equilbrium each
individual will recieve their value m or f

– Non-Transferable Utility: Positive Sorting

• h(m, f) = min{m, f}

– Transferable Utility:

∗ Typically we positive sorting because a Leonteif production function is a limit
of a sequence of CES production functions

∗ However it is also possible to construct examples where any sorting pattern
is possible (for example if all of the women are strictly better than all of
the men, then the same output will be produced regardless of the sorting
pattern)

– Non-Transferable Utility: Positive Sorting

Becker’s Marriage Market Warm up

1. Write out (in words) the steps for an algorithm that calculates the division of marital
output in a marriage market with more women than men, men propose to women, and the
output of the marriage is super-modular (so we have positive assortitive mating).1

• Rank both women and men from highest to lowest. There is positive assortitive
mating, so for i = 1, . . . , nM the ith ranked man will marry the ith ranked woman.
for i = nM, . . . , nF the ith woman will remain umarried.

• Start with the nM th couple.

1Hint: We did this in class!
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• The nM th woman will recieve zero surplus since her outside option is to remain
unmarried and recieve zero. Sf

nM = 0

• The nM th man will receive all the match surplus Sm
nM = h(mnM,fnM)

• Then iterate backwards until you reach the first couple:

• The ith ranked man will make a proposal to the ith ranked woman which will leave
here indifferent between marrying the ith man and the i+ 1th man:
Sf
i = h(mi+1, fi)− Sm

i+1

• The ith man will receive what is left over from his match with the woman:
Sm
i = h(mi, fi)− Sf

i .

2. Write out how this algorithm would change if there were more men than women, but men
still proposed.

• The algorithm would work in the same way but we would start with the nF th woman.

• The proposal of the nF th man would have to offer her the same surplus as she could
produce with the nF + 1th man
Sf
nF = h(nF + 1, nF )

• The nF+1th man would reseive the remainded of the match surplus
Sm
nF = h(nF, nF )− Sf

nF

• Then iterate backwards as before.

3. Assume that there are more fs than ms and that m’s “propose” in this model.2 Assume
the utility of not marrying is 0. In class we showed that such a setup will have positive
assortitive mating. Who will women i match with if i is less than the total number men?

The ith Woman will match with the ith Man.

4. Write a function that takes the “males” and “females” matrices defined below and calculates:
(1) the output of each match (we already know from positive assortitive mating which
male and female will match with each other) and (2) the division of the output between
men and women. The function should fill in the columns of the “males” and “females”
matrix and return those matrices in a list.
See code below.

5. What proportion of the output do fs get when education has the discrete binomial
distribution? Run the model a few times and make sure your initial run is not an outlier.

Under a discrete binomial distribution females get around 25% of output.

6. Change ”males” and ”females” to have education levels drawn from the uniform distribution
(currently commented out in the code below). How does this change the proportion of the
output that the fs get on average. Run the model a few times and make sure your initial
run is not an outlier.
Under a uniform distribution females get around 37% of output.

2This means men propose a division of the marriage output which women can accept or reject.
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7. Discuss the differences between your results in the previous two questions. Explain the
economics behind why they differ.
When Males propose they will always offer female the output equal to their opportunity
cost. When we have the binomially distributed output there are discrete levels of education,
and so there are often overlapping levels of education. When there is an overlap in the
level of education the individual with that overlap unable to extract any extra surplus
from that match above his outside option. So under a binomial distribution there will be a
more skewed distribution of surplus than under a uniform distribution where since there
are not discrete levels both individuals are able to extract some additional surplus at every
level.

8. (if you are struggling with the problem set, skip the remaining two parts of this problem
as they will be worth fewer points than the rest of the problem set.)

9. Extend your function to work in the case where there are more men than women, but men
still propose.
See code below.

10. What proportion of the output do fs now get when education is binomially distributed?
How about when education is distributed uniformly? How does this differ from your result
when there were fewer men than women.
See table below. When there more males than females, females recieve around 74%
of output under the Binomial distribution and around 60% of output under a uniform
distribution. Again these differences in these shares occur due to the same effects from
overlapping levels of education. However now the benefits of this one sided extraction
fall largely on the Females. This is because there are more males so the bottom female
can extract more surplus and the bottom male less. Since the amount of surplus all other
females can extract is cumulative, the females in this models extract more total surplus
than the males.

Avg Female Share of Output Std Dev

Binomial Distribution, #Female>#Male 25% 3%
Uniform Distribution, #Female>#Male 37% 4%

Binomial Distribution, #Male>#Female 74% 3%
Uniform Distribution, #Male>#Female 60% 4%

Table 1: Female Share of Output, Across 50 Simulations

# Generating Agents with education for Becker

# Marriage model. ================================

# Create Matrix Structure for Output

n <- 120

data.matrix <- matrix(0, n, 4) # data for males to fill in

data.matrix[, 1] <- c(1:n)

colnames(data.matrix) <- c("id", "educ", "output",

"surplus")

# Simulation 1 Binomial Distribution, More Females

# than Males

nMales1 <- 100 #number of males

nFemales1 <- 110 #number of females
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males1 <- data.matrix[1:nMales1, ] #create data matrix

females1 <- data.matrix[1:nFemales1, ]

# generate distributions of education levels

males1[, 2] <- sort(rbinom(nMales1, 16, 0.5), decreasing = T)

females1[, 2] <- sort(rbinom(nFemales1, 16, 0.5), decreasing = T)

# Simulation 2 Uniform Distribution, More Females

# than Males

nMales2 <- 100

nFemales2 <- 110

males2 <- data.matrix[1:nMales2, ]

females2 <- data.matrix[1:nFemales2, ]

males2[, 2] <- sort(runif(nMales2, min = 0, max = 16),

decreasing = T)

females2[, 2] <- sort(runif(nFemales2, min = 0, max = 16),

decreasing = T)

# Simulation 3 Binomial Distribution, More Males

# than Females

nMales3 <- 110

nFemales3 <- 100

males3 <- data.matrix[1:nMales3, ]

females3 <- data.matrix[1:nFemales3, ]

males3[, 2] <- sort(rbinom(nMales3, 16, 0.5), decreasing = T)

females3[, 2] <- sort(rbinom(nFemales3, 16, 0.5), decreasing = T)

# Simulation 4 Uniform Distribution, More Females

# than Males

nMales4 <- 110

nFemales4 <- 100

males4 <- data.matrix[1:nMales4, ]

females4 <- data.matrix[1:nFemales4, ]

males4[, 2] <- sort(runif(nMales4, min = 0, max = 16),

decreasing = T)

females4[, 2] <- sort(runif(nFemales4, min = 0, max = 16),

decreasing = T)

# ================================

# Section 2: Becker Matching Algorithm

#================================

output = function(wom,man=1,males,females)

{
# A function defining the output of a marriage

out = males[man,"educ"] * females[wom,"educ"]

return(out)

}
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BeckerMatch <- function(males=males1,females=females1,nMales,nFemales){
# Calculates becker marriage match under the following assumptions:

# 1.) Men Propose 2.) The output function leads to positive assortitive matching

#

# Inputs:

# nMales and nFemales: are the number of males and females respectively

# males,females: are (nMales x 4) and (nFemales x 4) matricies respectively where:

# the row "id" gives a unique id number of the individual

# the row "educ" gives the match quality of an individual

# the rows "output" and "surplus" are completed by the function

#

# Outputs:

# a list containing the completed 'males' and 'females' matricies with the

# "output" and "surplus" columns completed

for (m in nMales:1) #Loop over all males

{
if (nMales <= nFemales) #If fewer males than females

{
if (m == nMales) #If considering last male

{
#Generate Match Output

males[m,"output"] = output(wom=m,man=m,males,females)

females[m,"output"] = males[m,"output"]

#Male takes entire match output

males[m,"surplus"] = males[m,"output"]

#Female gets zero surplus

females[m,"surplus"] = 0

}
if (m < nMales) #If not considering last male

{
#Generate match output

males[m,"output"] = output(wom=m,man=m,males,females)

females[m,"output"] = males[m,"output"]

#Calculate female's outside option

secondbest_fem = output(wom=m,man=(m+1),males,females) - males[m+1,"surplus"]

#Male takes output less outside option

males[m,"surplus"] = males[m,"output"] - secondbest_fem

#Female gets outside option

females[m,"surplus"] = females[m,"output"] - males[m,"surplus"]

}
}
if (nMales > nFemales) #If more males than females

{
#Unmarried males get zero

if (m>nFemales) males[m,c("output","surplus")] = c(0,0)

if (m==nFemales) #If the last married male

{
#Generate match output

males[m,"output"] = output(wom=m,man=m,males,females)

females[m,"output"] = males[m,"output"]
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#Calculate outside option

secondbest_fem = output(wom=m,man=(m+1),males,females)

#Male gets output less outside option

males[m,"surplus"] = males[m,"output"] - secondbest_fem

#Female gets outside option

females[m,"surplus"] = females[m,"output"] - males[m,"surplus"]

}
if (m<nFemales) #If not considering last male

{
#Generate match output

males[m,"output"] = output(wom=m,man=m,males,females)

females[m,"output"] = males[m,"output"]

#Calculate outside option

secondbest_fem = output(wom=m,man=(m+1),males,females) - males[m+1,"surplus"]

#Male gets output less outside option

males[m,"surplus"] = males[m,"output"] - secondbest_fem

#Female gets outside option

females[m,"surplus"] = females[m,"output"] - males[m,"surplus"]

}
}

}
#Return data for males and females in list

return(list(males = males,females = females))

}

#================================

# Section 3: Becker Simulation and Output Tables

# ================================

num.sim <- 50 #Number of Simulations

# Matrix for outputting the female share of each

# simulation

share.f <- matrix(rep(NA, 4 * num.sim), nrow = 4)

# Loop runs simulation num.sim times

for (i in 1:num.sim) {

# Simulation 1 Randomly Generate Male Education

# Levels

males1[, "educ"] <- sort(rbinom(nMales1, 16, 0.5),

decreasing = T)

females1[, "educ"] <- sort(rbinom(nFemales1, 16,

0.5), decreasing = T)

# Find Beckerian Match Outputs

matches1 <- BeckerMatch(males1, females1, nMales1,

nFemales1)

# Extract Female Matches

females1 <- matches1[[2]]
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# Calculate Average Female Surplus

share.f[1, i] <- mean(females1[1:min(nMales1, nFemales1),

"surplus"]/females1[1:min(nMales1, nFemales1),

"output"])

# Simulation 2

males2[, "educ"] <- sort(runif(nMales2, min = 0,

max = 16), decreasing = T)

females2[, "educ"] <- sort(runif(nFemales2, min = 0,

max = 16), decreasing = T)

matches2 <- BeckerMatch(males2, females2, nMales2,

nFemales2)

females2 <- matches2[[2]]

share.f[2, i] <- mean(females2[1:min(nMales2, nFemales2),

"surplus"]/females2[1:min(nMales2, nFemales2),

"output"])

# Simulation 3

males3[, "educ"] <- sort(rbinom(nMales3, 16, 0.5),

decreasing = T)

females3[, "educ"] <- sort(rbinom(nFemales3, 16,

0.5), decreasing = T)

matches3 <- BeckerMatch(males3, females3, nMales3,

nFemales3)

females3 <- matches3[[2]]

share.f[3, i] <- mean(females3[1:min(nMales3, nFemales3),

"surplus"]/females3[1:min(nMales3, nFemales3),

"output"])

# Simulation 4

males4[, "educ"] <- sort(runif(nMales4, min = 0,

max = 16), decreasing = T)

females4[, "educ"] <- sort(runif(nFemales4, min = 0,

max = 16), decreasing = T)

matches4 <- BeckerMatch(males4, females4, nMales4,

nFemales4)

females4 <- matches4[[2]]

share.f[4, i] <- mean(females4[1:min(nMales4, nFemales4),

"surplus"]/females4[1:min(nMales4, nFemales4),

"output"])

}

# Generate output table showing mean and SD of

# average female share across simulations

outtable <- cbind(round(100 * apply(share.f, 1, mean)),

round(100 * apply(share.f, 1, sd)))

rownames(outtable) <- c("Binomial Distribution, #Female>#Male",

"Uniform Distribution, #Female>#Male", "Binomial Distribution, #Male>#Female",

"Uniform Distribution, #Male>#Female")

colnames(outtable) <- c("Average Female share of Output",

"std.dev")
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# Generate Latex table w xtable

xtable(outtable, caption = c("Female share of output, over 20 simulations"))

# ========================
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Gale Shapley

In the code below, I create a list of preference rankings for each man and woman in two different
marriage markets. In “males1” and “females1”, preferences over members of the opposite sex
are random. In “males2” and “females2” there is assortitive matching where a lower id number
is strictly preferred by everyone to a higher id number.

1. Write out the steps of the Gale-Shapley algorithm

• While matches matches are not yet stable (matches are not stable if some match
changed between this and the previous iteration)

• All unengaged men propose to the top ranked women they have not been rejected by

• All women with multiple proposals from this and the previous iterations choose their
top ranked man

• This man gets engaged with this women

• All other men who proposed to or were previously engaged with this woman become
single again

• End while loop

2. Implement the Gale-Shapley algorithm. Write an algorithm that takes a matrix of men’s
rankings of women and a matrix of women’s ranking of men as inputs. Have this function
implement the Gale-Shapely algorithm and return the final “match matrix” MM which
contains a 1 in cell MM [i, j] if male i marries female j and contains a 0 otherwise.

# Section 4: Gale-Shapley Algorithm

#========================

DeferredAcceptanceAlgorithm <- function(males, females){
# Runs a males proposing Gale-Shapley Deferred Acceptance Algorithm

#

# Inputs: males and females are (n x m) and (m x n) matricies indexed by row numbers

# where each row describes the rank order preferences over all individuals of the other type

#

# Outputs: matches is a binary (n x m) matrix

# with entrys of 1 if the ith man matched with the jth woman

# and entrys of 0 otherwise

matches = matrix(0,nMales,nFemales)

prev_matches = matrix(1,nMales,nFemales)

while (all((matches==prev_matches))==F) #Iterates until matches are stable

{
prev_matches = matches #Saves previous matches

for (m in 1:nMales) #Loops over all males

{
for (mate in order(males[m,])) #Loops over mates in order of preference

{

10



# if neither are engaged

if (sum(matches[m,])==0 & sum(matches[,mate])==0){
matches[m,mate]=1 # They get matched

}
if (sum(matches[m,])==0 & sum(matches[,mate])>0) # if woman is engaged

{
# identify her current fiance's index

otherguy = match(1,matches[,mate])

# check if proposal is better than her current match

if (females[mate,m] < females[mate,otherguy])

{
matches[otherguy,mate] = 0 # If so other guy gets dumped

matches[m,mate] = 1 # And current guy gets matched

}
}

}
}

}
return(matches) # Return matches

}

#========================

3. Run the algorithm on the two populations below and print the output to screen. Make
sure you get the correct result for the model with positive assortitive matching.

# Section 5: Gale-Shapley Simulation and Output

# Tables ========================

nMales <- 10

nFemales <- 20

# rankings... assumed lower is better (1st place,

# etc.)

males1 <- matrix(replicate(nMales, sample(nFemales)),

nMales, nFemales, byrow = T)

females1 <- matrix(replicate(nFemales, sample(nMales)),

nFemales, nMales, byrow = T)

# Find Matches using Deferred Acceptance Algorithm

matches1 <- DeferredAcceptanceAlgorithm(males1, females1)

# Output matches into Latex Table

xtable(matches1, display = rep("d", 21), caption = "Matches from randomly drawn preferences")

# Preferences from Becker's Marriage model (to see

# that we get the same results)

males2 <- matrix(replicate(nMales, c(1:nFemales)),

nMales, nFemales, byrow = T)

females2 <- matrix(replicate(nFemales, c(1:nMales)),

nFemales, nMales, byrow = T)

# Find Matches using Deferred Acceptance Algorithm

matches2 <- DeferredAcceptanceAlgorithm(males2, females2)

# Output matches into Latex Table
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xtable(matches2, display = rep("d", 21), caption = "Matches from assortative preferences")

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
7 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Table 2: Matches from randomly drawn preferences

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Table 3: Matches from assortative preferences

Research

In 1-3 sentences propose a research idea related to the marriage market.

Name two cases where matching models may be applicable outside of the marriage market.

Side Projects

• Side projects from previous homeworks are still valid (unless already completed, such as
making a specific entry on the class wiki.)

• Read Prof Becker’s original 1974 paper on this subject and write a short (1-3 page)
summary and response (2.5 points).

• Rewrite some or all of the code above in Julia or C++ (with Rcpp) (up to 3.5 points).

• Read and review two applied papers which test or extend Becker’s marriage model (1-3
pages, 2.5 points).
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• Look for a paper which models how couples negotiate the division of output within a
marriage and write a brief summary (1-2 pages, up to 2 points)

• Look for papers which discuss how divorce laws changed bargaining power. Read one and
write a brief summary and response (1-2 pages, 2 points).

• Go to ipums.org and explore the variables in the latest wave of the American Community
Survey (ACS) or the Consumer Population Survey (CPS). Find variables that are interesting
or surprising and write up a 1-page report (up to 2 points).

• Have a research idea? Write a document that provides a (1) two sentence statement of the
idea and (2) a more complete 0.3-1 page description of the idea (up to 3 points).
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