
Econ 21410 - Problem Set IV
Selection Part I∗

April 29, 2014

This homework should be done in LaTeX The homework will be graded on correctness, but will
also heavily weight clarity and professionalism. Its better to not do some of the harder parts
than to turn in an incomprehensible document. Your R script as well as a log-file should be
submitted. Alternatively, use knitr to print your code inline in your latex document.

SUBMISSION: The homework must be emailed to Oliver and myself by 2p.m. Monday, April
the 28st. The email must include a pdf with the filename lastname pset4.pdf and R code called
lastname pset4 code.R where ”lastname” should be replaced with your last name. The subject
of your email should be [ECON 21410: pset3 submission]

If you are struggling, please use the github page to ask for help!* Remember that asking and
answering questions on our github page, coming to office hours to ask questions, and contributing
to the class wiki are all worth participation credit, which is 10% of your grade in this class.

A Compensating Differential Model

Suppose we have two schooling levels s = 1 and s = 0. Assume everyone is identical. An
individual can make I0 = 50 if they are uneducated and can make I1(N1) if they are educated,
where I1(N1) = 500− 1

2N
2
1 .

• What condition ties down the equilibrium number of individuals who will get educated?
How many people will get an education (no need to code anything) In equilibrium, if there
is an interior solution (individuals are choosing both levels of schooling) then we would
expect inidviduals to be indifferent between chosing s = 1 and s = 0. So the following
condition holds:

I1(N1) = I0

500− 1

2
N2

1 = 50

⇒ N1 = 30

Thus if the total population NT > 30 individuals we expect N1 = 30 individuals to be
educated and the remainder uneducated N0 = NT − 30.
If there are fewer than thirty individuals, then the return to education will be strictly
positive, I1(N1) > I0. So we expect all individuals to be educated; N1 = NT and N0 = 0

∗Please email johneric@uchicago.edu and obrowne@uchicago.edu if you have questions.
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An Island Economy.

In class we went over (or will go over) several examples of sorting based on skill in an island
economy. In case I, skills were just randomly distributed. In case II, one of the occupations paid
everyone the same wage while the other occupation depended on one’s stock of skill. In case III,
skill matters for each occupation, but are perfectly correlated in a known fashion.

1. If a ∼ N(α, σ2a) and b ∼ N(β, σ2b ), what is the distribution of (a− b)?

(a− b) ∼ N(α− β, σ2a + σ2b − 2σa,b)

If the variables are independent this reduces to (a− b) ∼ N(α− β, σ2a + σ2b )

2. Reproduce plots 1-5 of my class notes using the formulas provided. Assume the population
is 100 people and that PF = PB = 1. For each of the 4 models store your simulation data
in a matrix with the columns: ”hunt”, ”fish”, ”occ”, ”wage”, where the first two columns
are hunting and fishing skills, the third column is equal to 1 if they choose hunt and equal
to 0 if they choose to fish, and the fourth column is equal to their observed wage. For the
first plot, draw both skills from uniform[0, 1] distributions. For the 2nd -4th plot, draw
hunting skill from the uniform[0, 1] and construct their Fishing skill.

# Section 1: Generating Data for simplest case:

# ================================

pB <- 1 #Factor Prices

pF <- 1

pop <- 100 #Population

skills <- matrix(runif(4 * pop, 0, 1), pop, 4) #Randomly initialize skills matrix

colnames(skills) <- c("Hunt", "Fish", "Which", "Wages")

skills[, 3] <- pB * skills[, 1] > skills[, 2] * pF

skills[, 4] <- pB * skills[, 1] * skills[, 3] + (1 -

skills[, 3]) * pF * skills[, 2]

Legend <- factor(skills[, 3], levels = c(0, 1), labels = c("Hunter",

"Fisherman"))

## Initialize Plot of who fishes and who hunts

plot1 <- qplot(x = skills[, 1], y = skills[, 2], data = data.frame(skills),

color = Legend, size = I(3), geom = c("point"),

xlab = "Log(B)", ylab = "Log(F)")

plot1 <- plot1 + ggtitle("Fishing and Hunting") + geom_abline(intercept = pB -

pF, slope = 1)

plot1 <- plot1 + theme(plot.title = element_text(face = "bold",

size = "18", color = "black"), axis.title = element_text(face = "bold.italic",

size = "12", color = "black"), legend.position = "bottom",

legend.text = element_text(size = 14), legend.title = element_blank())

plot1

skills_plot1 <- skills
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Fishing and Hunting

## Constant fishing skill

skills[, 2] <- 0.4

skills[, 3] <- pB * skills[, 1] > skills[, 2] * pF

skills[, 4] <- pB * skills[, 1] * skills[, 3] + (1 -

skills[, 3]) * pF * skills[, 2]

Legend <- factor(skills[, 3], levels = c(0, 1), labels = c("Hunter",

"Fisherman"))

plot1 + ggtitle("Fishing and Hunting (Case I)")
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Fishing and Hunting (Case I)

## Fishing skill decreasing in hunting skill

skills[, 2] <- 0.7 - 0.3 * skills[, 1]

skills[, 3] <- pB * skills[, 1] > skills[, 2] * pF

skills[, 4] <- pB * skills[, 1] * skills[, 3] + (1 -

skills[, 3]) * pF * skills[, 2]

Legend <- factor(skills[, 3], levels = c(0, 1), labels = c("Hunter",

"Fisherman"))

plot1 + labs(title = expression(paste("Hunting and Fishin (Case II, ",

beta, "=-0.3,", alpha, "=0.4)")))
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Hunting and Fishin (Case II, β=−0.3,α=0.4)

## Skills increase together, Most skilled fish

skills[, 2] <- 0.4 + 0.3 * skills[, 1]

skills[, 3] <- pB * skills[, 1] > skills[, 2] * pF

skills[, 4] <- pB * skills[, 1] * skills[, 3] + (1 -

skills[, 3]) * pF * skills[, 2]

Legend <- factor(skills[, 3], levels = c(0, 1), labels = c("Hunter",

"Fisherman"))

plot1 + labs(title = expression(paste("Hunting and Fishin (Case II, ",

beta, "=0.3,", alpha, "=0.7)")))
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Hunting and Fishin (Case II, β=0.3,α=0.7)

## Skills increase together, Most skilled hunt

skills[, 2] <- -0.3 + 1.6 * skills[, 1]

skills[, 3] <- pB * skills[, 1] > skills[, 2] * pF

skills[, 4] <- pB * skills[, 1] * skills[, 3] + (1 -

skills[, 3]) * pF * skills[, 2]

Legend <- factor(skills[, 3], levels = c(0, 1), labels = c("Hunter",

"Fisherman"))

plot1 + labs(title = expression(paste("Hunting and Fishin (Case II, ",

beta, "= 1.2,", alpha, "=-0.1)")))
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Hunting and Fishin (Case II, β= 1.2,α=−0.1)

## Positive covariance between hunting and fishing

skills[, 1:2] <- rmvnorm(pop, mean = c(4, 4), sigma = matrix(c(4,

0.9, 0.9, 1), 2, 2))

skills[, 3] <- pB * skills[, 1] > skills[, 2] * pF

skills[, 4] <- pB * skills[, 1] * skills[, 3] + (1 -

skills[, 3]) * pF * skills[, 2]

Legend <- factor(skills[, 3], levels = c(0, 1), labels = c("Hunter",

"Fisherman"))

plot1 + labs(title = expression(paste("Hunting and Fishin (Case III)")))
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Hunting and Fishin (Case III)

## Negative covariance between hunting and fishing

skills[, 1:2] <- rmvnorm(pop, mean = c(4, 4), sigma = matrix(c(1,

-0.9, -0.9, 1), 2, 2))

skills[, 3] <- pB * skills[, 1] > skills[, 2] * pF

skills[, 4] <- pB * skills[, 1] * skills[, 3] + (1 -

skills[, 3]) * pF * skills[, 2]

Legend <- factor(skills[, 3], levels = c(0, 1), labels = c("Hunter",

"Fisherman"))

plot1 + labs(title = expression(paste("Hunting and Fishin (Case III)")))
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Hunting and Fishin (Case III)

skills[, 1:2] <- rmvnorm(pop, mean = c(4, 4), sigma = matrix(c(1,

0.9, 0.9, 4), 2, 2))

skills[, 3] <- pB * skills[, 1] > skills[, 2] * pF

skills[, 4] <- pB * skills[, 1] * skills[, 3] + (1 -

skills[, 3]) * pF * skills[, 2]

Legend <- factor(skills[, 3], levels = c(0, 1), labels = c("Hunter",

"Fisherman"))

plot1 + labs(title = expression(paste("Hunting and Fishin (Case III)")))

# ================================
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Hunting and Fishin (Case III)

3. Finally, suppose that

[µi,b, µi,f ]′ ∼ N
([

0
0

]
,

[
σBB σFB

σBF σFF

])
and one’s log wage is equal to:

log(Wi,f ) = log(pf ) +X ′iβf + µi,f
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log(Wi,b) = log(pb) +X ′iβb + µi,b

where X is physical strength.1 Draw values of X from uniform[0, 2] for the population
and assume βb = 2 and βf = 0.5 (hunting takes more physical strength than fishing).
Let log(pf ) = 2 and log(pb) = 1. Using the decision rule on page 9 of the class notes,
find a variance-covariance matrix which looks “reasonable” (i.e, no more than 75% of
individuals in either of the occupation, variances not so large that the observed skills play
no noticeable role). With this new

• Create a new matrix which has 7 columns: ”X” ”fishing wages”, ”hunting wages”,
”observed wages1”, ”observed wages2”, ”occ1”, and ”occ2” and fill in the first three
columns.

# Question 3 ================================

# Parameters

log.pB <- 1 #Factor Prices

log.pF <- 2

beta.B <- 2 #Ability coefficents

beta.F <- 0.5

pop <- 1000 #Population

# Generate data matrix

skills <- matrix(NA, pop, 7) #Randomly initialize skills matrix

colnames(skills) <- c("X", "fishing_wages", "hunting_wages",

"observed_wages1", "observed_wages2", "occ1", "occ2")

# Generate Data

skills[, "X"] <- runif(pop, 0, 2)

mu <- rmvnorm(pop, mean = c(0, 0), sigma = matrix(c(1,

0.5, 0.5, 1), nrow = 2))

skills[, "fishing_wages"] <- exp(log.pF + beta.F *

skills[, "X"] + mu[, 1])

skills[, "hunting_wages"] <- exp(log.pB + beta.B *

skills[, "X"] + mu[, 2])

• In ”observed wages1” and ”occ1” record the occupation they choose (1 if they choose
to hunt, 0 if they choose to fish) using the decision rule from page 9 of class notes
and their observed earnings under this decision rule.

skills[, "occ1"] <- skills[, "fishing_wages"] > skills[,

"hunting_wages"]

skills[, "observed_wages1"] <- apply(skills[, c("fishing_wages",

"hunting_wages")], 1, max)

• In ”observed wages2” and ”occ2”, assume the agents do not know µi,b and µi,f , but
only know that in expectation they are 0. Fill in their choice and observed wages
using this alternative decision. How much Y1 and Y2 are produced in the two cases?
How many individuals make different occupational choices in the two cases?

skills[, "occ2"] <- (log.pF - log.pB) + (beta.F - beta.B) *

skills[, "X"] > 0

1use the package ”mnormt” or ”mvtnorm” for to draw draw from a bi-variate normal distribution

7



skills[, "observed_wages2"] <- skills[, "fishing_wages"] *

skills[, "occ2"] + skills[, "hunting_wages"] *

(1 - skills[, "occ2"])

## [1] "Output when individuals wage shocks observe a priori: $ 66784"

## [1] "Output when individuals wage shocks unobserved a priori: $ 64021"

## [1] "People choosing 'wrong' occupation when shocks unobserved: 22 %"

## [1] "Economic cost of not observing wage shocks: $ 2764"

Regression on your generated data

• Take the data simulated to make plot 1 and run a regression of Y on B and F using the
”lm()” command, do you recover the true skill prices? Run the same regression but use
the ”subset” option of the ”lm()” command to run only on those who are Fish, what skill
coefficients do you get? What about if you us the sub-population of people who hunt?
see Table 1. below.
We cannot recover any meaningful coefficients when we regress wages on wages in each
specialization. When we run the regression on the subsets of those who fish and hunt we
trivially geta coefficent of 1

# Regression Models on the true wages

skills_plot1 <- data.frame(skills_plot1)

reg1 <- lm(Wages ~ Hunt + Fish, skills_plot1)

reg1a <- lm(Wages ~ Hunt + Fish, skills_plot1, subset = (Which ==

1))

reg1b <- lm(Wages ~ Hunt + Fish, skills_plot1, subset = (Which ==

0))

# Use texreg to generate output table

# texreg(list(reg1,reg1a,reg1b),

# custom.model.names=c('Everybody','Fishers
# Only','Hunters Only'), caption = 'Wages as

# explained by hunting and fishing wages for

# fishers and hunters')

• Similarly, take the matrix generated in part 3 above and:

– Regress ”observed wages2” on X and a constant2 for the full population, do you get
the correct coefficients?
See Table 2. below. It is not clearin this question what underlying true parameters
are trying to estimate.

– Run the regression above, but restrict the regression to ”occ2==1” and ”occ2==0”,
do you recover the true parameters?
See Table 2. below. We cannot estimate the correct coefficents for each occupation.
Thus is due to truncation bias.

– Regress ”observed wages1” on X and a constant for the full population, do you recover
the true parameters?

2By default the ”lm()” command will include a constant
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See Table 2. below. It is not clearin this question what underlying true parameters
are trying to estimate.

– Run the regression above, but restrict the regression to ”occ1==1” and ”occ1==0”,
do you recover the true parameters?
See Table 2. below. We cannot estimate the correct coefficents for each occupation.
This is due to selection on unobservables creating a non-zero expeted value of the
error term conditional on occupation choice.

– Discuss the results above (no more than 6 sentences.) This excercise makes clear
that if individuals choose their occupations and we cannot observe the hypothetical
wages that individuals would have earned in alternative occupations, then it is difficult
to estimate the underlying true relationships between. If you want to get a better idea
of why regression has failed here, try plotting the fitures of wages against ability with
the true and estimated regression lines. Next problem set will look at approaches to
consistently estimating these models. One approach would be the Heckman selection
correction we discussed in class last week.

– I would recommend learning how to use ”xtable()” ”stargazer” or ”texreg” to output
regression tables automatically to latex, not required, but a useful skill!
see Table 2. below

# Regression Models on the observed wages when wage

# shocks are known

skills <- data.frame(skills)

reg3 <- lm(log(observed_wages1) ~ X, skills)

reg4 <- lm(log(observed_wages1) ~ X, skills, subset = (occ1 ==

1))

reg5 <- lm(log(observed_wages1) ~ X, skills, subset = (occ1 ==

0))

# Regression Models on the observed wages when wage

# shocks are unknown

reg6 <- lm(log(observed_wages2) ~ X, skills)

reg7 <- lm(log(observed_wages2) ~ X, skills, subset = (occ2 ==

1))

reg8 <- lm(log(observed_wages2) ~ X, skills, subset = (occ2 ==

0))

# Use texreg to generate output table

# texreg(list(reg3,reg4,reg5,reg6,reg7,reg8),

# custom.model.names=c('Observed 1','Observed 1,

# Fisher','Observed 1, Hunter','Observed
# 2','Observed 2, Fisher','Observed 2, Hunter'),
# caption = 'Regression coefficients for ability on

# wage for: 1.) Observed populations when agents

# know wage shocks (Observed 1 columns) and 2.)

# Observed populations when wage shocks are unknown

# (Observed2 columns)')
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Everybody Fishers Only Hunters Only

(Intercept) 0.15∗∗∗ 0.00∗∗∗ 0.00∗∗∗

(0.03) (0.00) (0.00)
Hunt 0.60∗∗∗ 1.00∗∗∗ 0.00∗∗∗

(0.04) (0.00) (0.00)
Fish 0.44∗∗∗ 0.00 1.00∗∗∗

(0.04) (0.00) (0.00)

R2 0.80 1.00 1.00
Adj. R2 0.79 1.00 1.00
Num. obs. 100 49 51
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 1: Wages as explained by hunting and fishing wages for fishers and hunters

Observed 1 Observed 1, Fisher Observed 1, Hunter Observed 2 Observed 2, Fisher Observed 2, Hunter

(Intercept) 1.92∗∗∗ 2.21∗∗∗ 1.65∗∗∗ 1.65∗∗∗ 1.97∗∗∗ 1.23∗∗∗

(0.06) (0.08) (0.09) (0.06) (0.11) (0.14)
X 1.45∗∗∗ 0.98∗∗∗ 1.66∗∗∗ 1.58∗∗∗ 0.74∗ 1.87∗∗∗

(0.05) (0.12) (0.07) (0.05) (0.29) (0.10)

R2 0.46 0.17 0.46 0.46 0.02 0.35
Adj. R2 0.46 0.17 0.46 0.46 0.02 0.35
Num. obs. 1000 338 662 1000 325 675
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 2: Regression coefficients for ability on wage for: 1.) Observed populations when agents know wage shocks (Observed 1 columns) and 2.)
Observed populations when wage shocks are unknown (Observed2 columns)
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Side Projects

For side projects related to this homework, please note what you did in your homework solution.

• Post on the class wiki example code to that makes a plot similar to the ones I have asked
you to reproduce in ggplot2. File an issue with the link so student’s know it is available.
(1 point for whomever posts, and up to 1 point for anyone who adds additional details /
explanation to the wiki entry.)

• Make a wiki entry on the “lm()” command in R explaining it and providing a couple
examples (1 point for the creator and up to 1 point for 2 additional people who clarify,
edit and extend the initial post).

• Read the Palgrave dictionary entry on selection bias and write a 1-2 page summary:
http://www.dictionaryofeconomics.com/article?id=pde2008 S000084

• Read Heckman’s 1976 or 1979 paper on selection and write a 1-3 page review response
https://www.sonoma.edu/users/c/cuellar/econ411/Heckman.pdf http://www.nber.org/chapters/c10491.pdf
(2.5 points).

• Find a published applied paper from the past 30 years which looks at selection into
occupations, jobs, the work force, or education. Write a 1-3 page review and response (2.5
points).

• Find a prewritten package for performing selection correction in R and write a wiki page
explaining it / providing an example (up to 2 points for the writer, and up to 2 points for
2 other people who edit, clarify, and extend with additional examples.)

• Rewrite some or all of this code in Julia or C++ using Rcpp (up to 4 points).

• Make a shiny app which allows a user to simulate from one of the models we have covered
in class using a garphical user interface (up to 4 points).

• Write a wiki entry for ”xtable()”, ”stargazer()”, and ”texreg()” explaining the command
and providing examples (1 point for initial writer, and up to 1 point for people who make
meaningful additional contributions such as additional examples.)
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